
Generic Bluetooth Module for
SHARP Pocket Computers

Introduction
This module is a wireless replacement for serial RS-232 cables and level converters, like
the CE-160xL, CE-13xT, CE-T800/1 or custom FTDI-chip based USBtoUART cables.

There are several advantages of the module over cable based solutions:

• Wireless communication to a PC/MAC (obvious)

• Reliable, full speed data transfer with bidirectional hardware handshake:
The most common cables (e.g. CE-133T) do not support RS-232 hardware handshake at all, so the
XON/XOFF protocol (software handshake) and typically a slower baud rate than the pockets
maximum must be used instead.
However, if you have a cable that supports bidirectional RTS/CTS hardware handshake for the PC-
1600 this cannot support hardware handshake for the PC-E500(S) and PC-1350/60, and vice versa,
because of incompatible signal interpretations (RTS vs. RTR) of these models - although they use
the same physical 15-pin plug.
This BT-module is able to compensate that via a switch.

• 8-bit binary data/program transfer capability
If your pocket computer supports serial, binary data transfer, like the PC-1600 (e.g. by
BSAVE/BLOAD) – the BT-module can handle that as well.

• One-fits-all:
The BT-module is designed to support SHARP pockets with a 15-pin serial port as well as those with
a 11-pin serial port.

Structure
The BT-module consists of three sub-modules or units:

• BT/UART Unit
Namely the Sena Parani ESD200 Bluetooth to UART module.

• BT/Core Unit
Custom level-converter and adaptor for the SHARP 11-pin serial interface

• BT/Adaptor Unit
Custom adaptor from SHARP 11-pin to SHARP 15-pin serial interface including a
switch for the hardware handshake style (i.e. RTS vs. RTR)

Hardware Functions
The picture above is also showing the switches, connectors, LED and jumper positions:

• RTR-switch
Toggles the hardware handshake pinout for the 15-pin interface between PC-1600
style and PC-E500 style. Another SHARP pocket with PC-E500 style pinout
(tested) is the PC-1360. In general these are pockets that provide an RTR (or RR)
signal at pin-11 of the 15-pin serial interface. In contrast, PC-1600 style interfaces
are those that only expose a RTS (or RS) signal at pin-4 and none at pin-11.

• PWR-supply switch
Toggles the power supply source for the BT-module between internal (i.e. batteries
of the pocket) vs. external (i.e. power supply connected to the PWR-supply socket).

• PWR-supply socket
An external power supply of 5V to 12V can be connected here to unburden the
batteries of the pocket. When the BT-module is used together with pockets that are
driven by coin cells, like the PC-1350/60, the external power supply must be used.
ATTENTION:
Take care of correct polarity (+/-), otherwise the module may be destroyed.

• RST-jumper
By setting a standard jumper here for about 3-4sec (or more) while the module is
internally or externally powered the module performs a hard reset, which restores
the factory default settings of the BT/UART (see doc of Sena Parani ESD200 and
BT-Module Defaults, Hard Reset and Factory Defaults). The jumper has to be set
after the module was powered on, otherwise no hard reset will be executed.
This should only be done in "emergency cases", e.g. when you have set a baud
rate higher than the max of your fastest pocket computer – so that the module does
not "speak" to your pockets anymore ;-)
The factory default UART setting is 9600baud, No parity, 1 stop-bit.

• LED
The LED lights up while the DTR signal of the connected pocket computer is at
HIGH level. This is the case, when the pocket opens its serial interface for
communication (read or write). So the LED does not indicate actual data transfer
but the state "ready for data transfer".

BT-Pairing
The Bluetooth pairing process is just like with any other Bluetooth device. When powered
the BT-module is visible to your PC/Laptop/MAC (unless you change the modules
operating mode) and the pairing can be initiated from those peers. The passcode is 1234,
but can be changed. For Windows 10 the dialog is this:

BT-Connection
As a result of the BT-pairing process the host operating system (Windows, OSX, Linux)
creates one ore more virtual COM-ports. Windows (10) creates two virtual COM ports per
Bluetooth-device, which are enumerated by the Windows device manager and by the
terminal programs as well.

The following screenshot shows hterm on Windows 10

One COM-port is for outgoing connections and one for incoming. Unfortunately you cannot
easily decide upfront which is which – so you have to try connecting to the module by your
terminal program and see which of the two is establishing a connection. A successful
connection should at least result in activation of the DCD line. Terminal programs typically
indicate that:

I recommend to deactivate the unused virtual COM-port in the Windows device manager
to avoid further confusion.

ATTENTION

When the BT-module is powered but not connected it performs an active scan for BT-
peers, which is the most power consuming mode of the module (about 50mA). Of course
this is not critical, but you shouldn't leave the module powered but unconnected for a
longer period of time to safe battery life.

If you plan a longer re-configuration session, you can put the module into main mode 0
(i.e. standby main mode) to save batteries - see BT-Module Settings.

Serial Settings
The fundamental principle of RS-232 communication in general is the alignment of the
protocol parameters. They have to be identical for the pocket computer and the terminal
program used at the peer. Since the BT-module can be thought of an 'intelligent' virtual
RS-232 cable, its settings have to be identical too, in order to establish a functioning data
transfer. The essential RS-232 protocol parameters and the default settings of the BT-
module are:

1. Baud rate: 9600 – changeable in range of 1200 to 115200, each step doubles

2. Data bits: 8 – not changeable

3. Parity bit: None – changeable to Even, Odd

4. Stop bits: 1 – changeable to 2

5. RTS/CTS hardware handshake: On – must not be changed

6. DTR/DSR hardware handshake: Loopback – not changeable
(i.e. DTR output of pocket is routed back to DSR and CD inputs
=> DTR/DSR handshake setting/requirement of the pocket is irrelevant)

7. XON/XOFF software handshake: not supported
(i.e. the BT-module does not generate or interprete XON- and XOFF-chars but
treats them as normal characters and just transfers them)

So the pocket computer and terminal prog as well ideally matches the BT-modules
defaults. If this is not possible or desired, then select a setup that is as close as possible.
E.g. the PC-1360's highest supported native baud rate is 1200, which means you have to
lower the BT-modules baud rate to 1200 in order to use it with the PC-1360. But all other
default settings of the module are/can be matched by that pocket.

The PC-1600, PC-E500 and PC-G850V however are fully compatible with the BT-modules
default settings, so it comes "ready to run" for those pockets (surely others too, but not
tested).

Pocket Computer Serial Settings
The concrete possibilities, commands and syntax for setting the RS-232 protocol
parameters varies quite heavily between the different SHARP pocket computer models.

Here are some templates to match the BT-modules defaults:

PC-1600: // RTS/CTS hardware handshake setup via SNDSTAT and RCVSTAT

SETCOM "COM1:",9600,8,N,1,N,N

INIT "COM1:",512

SNDSTAT "COM1:",59:RCVSTAT "COM1:",61,0

PC-1360: // 1200 baud max, fixed RTR/CTS and DTR/DSR/CD hardware handshake

OPEN "1200,N,8,1,A,C,&1A"

CLOSE

PC-E500(S): // fixed RTR/CTS and DTR/DSR/CD hardware handshake

OPEN "9600,N,8,1,A,C,&H1A,N,N"

CLOSE

PC-G850(V/S): // config via menu, no DTR/DSR hardware handshake

TEXT->Sio->Format:

baud rate = 9600

data bit = 8

stop bit = 1

 flow = RS/CS

Serial setup for other SHARP pockets should be similar to one of these.

REMARK

The end-of-line and end-of-file character-settings are not exactly part of the serial protocol
settings. They are not interpreted by the BT-module, but by the terminal-app and the
pocket computer. E.g. if you have a BASIC source file containing CR+LF eol codes that
you want to LOAD, you have to adopt the settings (e.g. 'L' instead of 'C' in the OPEN-
statement). But this is a general rule and has nothing to do with the BT-module.

Terminal Program Serial Settings
As stated above the serial settings of the terminal program have to be identical to that of
the pocket and the BT-module. Recommended freely available terminal programs are:

Windows: hterm

MAC-OSX: CoolTerm

Once you have set the pocket and the terminal program to the same serial settings as the
BT-module and have established a connection to the correct virtual COM-port on your
Bluetooth peer computer, you can use the BT-module just like an RS-232 cable. You can
perform the respective BASIC commands like SAVE and LOAD or even BSAVE or BLOAD
for binary transfer, if your pocket computer supports that.

BT-Module Settings
This section is only relevant, if you want to (or have to) change the BT-modules defaults.

I recommend to change these settings only if mandatory – e.g. for adopting the baud rate
to the pocket computers maximum.

The settings of the BT-module are the settings of the BT/UART sub-module (Sena Parani
ESD200) that is hooked by the BT/Core sub-module (see Structure).

The settings of the ESD200 can be changed by so called AT-commands. These are
special character strings beginning with "AT.." which are interpreted by the module when
sent to it in standby mode (e.g. unconnected).

These settings are persistent (i.e. stored in an internal flash memory), so they "survive" the
scope of a session.

In principle there are three different ways how the BT/UART sub-module can by accessed
hardware-wise for a settings change:

1. Sena Parani JigBoard for ESD200
Sena commercially offers a shield (JigBoard) for the ESD200 that has a DB9 port
and can be connected via an DB9/USB Adaptor to a Windows PC. For convenience
there is a Windows-based frontend application (called ParaniWin), that
encapsulates the most importand (but not all) AT-commands behind a friendly UI.

2. The ESD200 doc includes a detailed circuit diagram for building a custom JigBoard.
Rest as in 1.

3. The AT-commands can be entered and sent from your pocket computer directly to
the BT-module without any shield/JigBoard.

The rest of this section is focused on 3. For the complete list and detailed description of all
available AT-commands, see the ESD200 doc.

Technically, sending an AT-command from your pocket to the BT-module is nothing else
but sending a character string over RS-232 (e.g. by OPEN, LPRINT). Reading the answer
(e.g. 'OK' or 'ERROR') is nothing else but reading one ore more character strings (i.e. lines
of the answer) from the RS-232 interface (e.g. by INPUT#)..

The only difference is that the module is accepting AT-commands only in standby mode
and not in online mode (i.e. connected / ready for data transfer to a Bluetooth peer).

The ESD200 provides 4 different main modes:

Mode Meaning Remarks

0 Standby main mode, module accepts AT-
commands, but cannot be connected

Factory default mode after reset

1 Try connect to the last connected device Used for point-to-point
communication with another
ESD200 as slave

2 Wait for connection from last connected device Used for point-to-point
communication with another
ESD200 as master

3 Allow other BT-devices to pair and connect.
Normal operating mode.

The BT-module is in this
mode when delivered

The main modes 1-3 provide two submodes each: Online and standby. In online-submode
the module does not interprete or accept AT-commands but transfers data. In standby-
submode it accepts AT-commands but does not send data via Bluetooth.

You can make an explicit transition from online-submode to standby-submode by sending
a special escape character string (which is changeable and deactivatable). Default escape
string is "+++". To turn back to online-submode use the AT-command ATO.

To change the main mode use the AT-command AT+BTMODE,n where n is the mode
number from the table above.

As an example configuration session lets assume the module is in main mode 3, online
(connected) and we want to change the modules baud rate to 1200. The module can
respond to AT-commands with an "answer" (typically 'OK', 'ERROR' or specific requested
infos). The command response can be switched on by ATS10=1 and off by ATS10=0. For
an AT-command session the command response should be on, but for normal operating
with your pocket PC it must be off. So here is a sequence, to do the job:

+++ // escape to standby-submode => no repsonse

ATS10=1 // command response on => response: OK

AT // 'ping' the module just for check => response: OK

AT+UARTCONFIG,1200,N,1 // set the desired UART parameters => response: OK

ATS10=0 // command response off again => no response

ATO // return to online submode => no response

The UART parameter change becomes effective after the next power-on boot of the
module.

The concrete BASIC-commands and syntax for RS-232 handling vary between the
different SHARP pocket computers. Here are some templates (assuming serial setting
done – see Pocket Computer Serial Settings):

PC-1600:

SETDEV"COM1:",KI,PO // redirect input and printer output to COM1

LPRINT"AT" // send a string to COM1

INPUT I$: PRINT I$ // read one line from COM1 and show

PC-1360, PC-E500:

OPEN // open the COM interface with last settings

LPRINT"AT" // send a string to COM

INPUT#1,I$:PRINT I$ // read one line from COM and show

PC-G850(V/S):

OPEN"COM:" // open the COM interface with Sio/Format settings

PRINT#1,"AT" // send a string to COM

INPUT#1,I$:PRINT I$ // read one line from COM and show

Serial character string transfer for other SHARP pockets should be similar to one of these.

Here is an elegant and short dialog style program for entering AT-commands and
displaying the respective results for the PC-1600:

10 CLS :WAIT 0

20 DIM C$(1)*80:DIM R$(1)*80: REM some cmd and resp are too long for std-vars

30 PRINT "COMMAND-INTERFACE"

40 SETCOM "COM1:",9600,8,N,1,N,N: REM must match active BT-module settings

50 INIT "COM1:",512

60 SNDSTAT "COM1:",59:RCVSTAT "COM1:",61,2: REM set handshake and rcv-timeout

70 OUTSTAT "COM1:"

80 SETDEV "COM1:",PO

90 C$(0)="":INPUT "SND:";C$(0)

100 IF LEN (C$(0))=0THEN END

110 LPRINT C$(0)

120 SETDEV "COM1:",KI

130 B=0:ON ERROR GOTO 190: REM install timout handler for COM1 receive

140 R$(0)="":INPUT R$(0): REM timeout, if no (more) respopnse line available

150 IF B=1GOTO 180: REM if there was a timeout, stop reading lines from COM1

160 IF R$(0)<>""THEN PRINT "RCV:";R$(0): REM print non-empty response line

170 GOTO 140: REM try read another line of the response

180 GOTO 80: REM ready to enter next command

190 B=1:IF ERN =143THEN RESUME NEXT: REM receive timeout on INPUT in line 140

200 PRINT "ERROR:";ERN :END

The baud rate in line 40 has to be adopted to the actual setting of the BT-module.
Be aware, that a response typically has multiple lines, some of which are empty. So the
total response is consumed, when INPUT is blocking (resp. timed out, if your pocket
supports that).

I leave it as an "exercise" to code equivalents for other SHARP pockets ;-)

BT-Module Defaults, Hard Reset and Factory Defaults
The BT-module comes pre-configured "ready to run" and these defaults are not equal to
the factory defaults you get after a hard reset (see Hardware Functions) and AT&F
command).

ATTENTION

After a hard reset the factory defaults are restored and the module is in main mode 0, not
in main mode 3. So it can't be paired nor connected in that state!

After a hard reset or change of the BT-modules 'name' it may be necessary to perform a
new pairing process from your host OS. Delete the old pairing (BT-device) first in that
case.

Here is a list of commands you can apply, in order to restore the delivery pre-configuration
after a hard reset:

AT // 'ping' the module just for check (=> response: OK)

AT+BTNAME=SHARPBT1 // set a user-readable name for this Bluetooth device

AT+BTSEC,1,0 // set authentication=on (i.e. passcode), encryption=off

ATS12=1 // IMPORTANT: set empty internal cache on disconnect

AT+BTMODE,3 // IMPORTANT: change to main mode 3

ATS10=0 // IMPORTANT: disable command response

(Some of) the changes become effective after the next power-on boot of the module.

Kit Assembly
The assembly of the kit is straight forward:

Orientation-critical parts are the ICs, LED and tantal electrolytic capacitors (C6,C7).

Recommended assembly order for BT/Core unit:

1. IC2

2. IC1

3. Small capacitors (C1-C5 = 100nF), resistors (R1=22kOhm, R2=4,7kOhm), LED

4. Large capacitors (C6, C7 = 10µF)

5. Voltage regulator

6. Plugs, pins, switch

Be aware of the switching scheme of the provided toggle switches (see pics) in case you
exchange them by different switches.

ATTENTION

Before you make any operational tests with the module after assembly, please assure that
there is no short circuit between VCC and GND (see pic).

CE-133T Mod for Housing
If you have an abandoned CE-133T or equivalent, you can modify it with a micro-tool to
build a nice BT-module housing for 15-pin SHARP interfaces. To fit into the housing you
have to remove the plastic and shorten the pins of the ESD200, so that the total assembly
is as flat as possible.

Symptoms, Causes and Solutions

Symptom Possible Causes Solutions

Protocol ERROR or invalid
line number ERROR when
LOADing a program

RS-232 protocol parameters
of pocket, terminal-app or
BT-module do not match

Check the settings (baud
rate, parity, stop-bit,
RTS/CTS-handshake) at
pocket and terminal-app. If
necessary change the BT-
module settings.
All three must match.

The internal cache of the BT-
module contains data (junk)
from the last data transfer or
AT-command responses
from the module, that have
not been read.

Disconnect from and power-
off the module/pocket to
empty the internal
cache.Then reconnect again.
If a hard reset was
performed, assure that
ATS12=1 is set.

The program source file
contains other end-of-line
markers than you have set at
the pocket (e.g. CR vs.
CR+LF)

Change the end-of-line
setting at the pocket
computer or change the
source file respectively.

The LOADing of a program
does not terminate (stuck)

The hardware handshake is
not set correctly

Check RTS/CTS settings in
terminal-app and pocket.
Check the handshake style
switch of the BT-module (at
the 15-pin adaptor).

The source file does not
contain the end-of-file
character the pocket expects

Add the proper end-of-file
character the pocket expects
(e.g. 1A(hex)) or send it
from the terminal app.

ATTENTION

Be aware that if there was an incomplete/interrupted data transfer from the host/terminal-
app to the pocket, it is very likely that the internal cache of the BT-module contains some
rest of that preceeding data stream (junk) that would be consumed by the next reading
operation, leading to an error. So in that case, disconnect from and power-off the
module/pocket to empty the internal cache.Then switch on and reconnect again.

	Introduction
	Structure
	Hardware Functions
	BT-Pairing
	BT-Connection
	Serial Settings
	Pocket Computer Serial Settings
	Terminal Program Serial Settings
	BT-Module Settings
	BT-Module Defaults, Hard Reset and Factory Defaults
	Kit Assembly
	CE-133T Mod for Housing
	Symptoms, Causes and Solutions

