o
i

POCKE

esidl

s =
JE

=

53

A

ENCEM

L REFER

CA

3
-

TECH!

B

POCKET COMPUTER

PC-1600

TECHNICAL REFERENCE MANUAL

FORWARD

The PC-1600 Technical Reference Manual describes the specifications and usage of the
I0CS (Input/Output Control System), which controls the I/O operations of the PC-1600
main unit and the peripherals, and gives information regarding the PC-1600 hardware and
its interfaces (system bus, RS-232C, etc.)

The Technical Reference Manual has been compiled to provide the IOCS interface
information that may be needed when advanced users and programmers write more
sophisticated application programs using the machine language of the PC-1600 and to
give the hardware information necessary for construction of an application hardware
‘system using the PC-1600. This manual also contains PC-1600 programming know-how
and considerations so that PC-1600 users can make the most of the PC-1600 system.

The Technical Reference Manual has been written on the assumption that the reader is
already familiar with the basic knowledge of PC-1600 and the general information about
computer hardware and programming (especially of Z80 CPU). Many commercial
publications are available describing general computer architecture and Z80 CPU. Read
them, if necessary, in addition to this manual. ,

We hope that PC-1600 users, software house programmers and system house engineers
will use this manual to develop various kinds of application programs for the PC-1600
system and PC-1600-based application systems.

SHARP CORPORATION
Information Systems Group

CONTENTS

FORWARD
CHAPTER 1 SYSTEM CONFIGURATIONoccreriscsnecssecssnenns 1
CHAPTER 2 Z-80 MACHINE LANGUAGE PROGRAMS AND
LOAD AREA ... ssssssssssssssasss s s esssssssassassssnes 5
2.1 MemMOTrY Map ...cocciierneriesensise s esiaesisnsssstsarssassasssessessosanssanssssassssanas 6
2.2 BASIC Commands Related to Machine Languagecoviivvinnennnennnnnnens 7
CHAPTER 3 HOGS ...t sssss s s isssessasassssesssssesmsssssssssnssssasssssases 11
BT DISPLAYccooversnssersonsoonronesiiiisuiinisssssssssssssssisasssisnsisdeniosssssisaeessonssaremserasnsnraness 12
3.1.1 10CS Routines for LCD ..o s 12
3.1.2 Work Area used for IOCS Routines for LCD ...ccovvvcinenens ereererenssenssssanes 28
3,13 Character FONT «svisivivivevsivirsssssssssssssassssmsessasssostsassssssssennsrasnsasssanas 29
3.2 KEY INPUT ..ottt s snas s sssssasacanns 30
3.2.1 10CS Routines for Key INPUL ..ecceimseneseresmmsssesesesssessens e raganenassmsnons EEHEEE 30
3.2.2 Work Area used for 10CS Routines for Key Inputviiiniiiicniinncnnnns 37
3.2.3 Scanning of ON (BREAK) Ky ...ccoccirevecersmrmmsunnsinisnssiensnsmscennsinsscnnn 38
3.2.4 Entry of International Characters and Symbolsocecivninninieennnnn 38
3.2.5 Data Flow from Key Scanning to KEYGET Routinecccuvmnvnrvsieriannne 38
3.2.6 Re-definition of KeYs: siwsimmmmsimsusismssissssssansmsmssiscsssersssssessvissisisnsnns 39
Bi8 FILES ...ociiomssnsersascassecssecsvessassresanssnsossassssussansssnassnsnssnesnnsnssansessess nsbnndieddadaaissossassns 45
3.3.1 Files Handled in BASIC ..o 45
3.3.2 1OCS Routines fOr FHES .iisuiimcmmiissismissis s vessseiaiiossisiis insssaassssssssmmssss 48
3.3.3 Structure of Memory File e rccscmesensesssssssnessesssessares 53
3.4 INTERRUPT HANDLINGccooiirieiriiniccrnrceeecsnenssanrcasssssensssnsssersassrsasssssessansscns 58
341 Interrupt HamAliNG scoessssisrensnssrsosmmssmsmsesssessssenssmmes ssssssssssesssasiss 58
3.4.2 Work Area used for Interrupt handling ..., 61
35 SYSTEM START-UPcooorceerceeecaessensssssrtsssssassssssssssss s sssssssssasssssasssssnses 62
3.5.1 Processing at POWEr Oneiiiccnneennrircrnnerensisceesensessessessseessessssnnnnes 62
3:5:2 Execlition of Boot Program caaasimsmsmamssssmsivssavmsnsirsmsmsatsimss 63
3.6 RS-232C AND SHOc..ooiiirrrcrrcrrrrrrsrrrerrersrereesersessesrssreesneesssessssessssesssnsasnses 65
3.6.1 Handling RS-232C and SIO in BASICccccevevrrrverrceevrsnnseessesssersenens 65
3.6.2 Data Format of CommuNICatioNScccerieiiimicncimsreeniesrereneeescsssens 67
3.6.3 10CS Routines for RS-232C and SlOceeivvccreniennnenrenevseesesesessesanns 67
3.7 PRINTERocoiiinicniininisinnioiiisiiineiensinsssessessssssssssssesssssssssssssssnssssesasassasssnsssns 75
3.7.1 10CS Routines for Printer (1) .ccrnrrennmrssrecisssrsseessennsserevesresssessneens 75
3.7.2 10CS Routines for Printer (2) ..ciiiieineerssesensesesmesereeenses 76
k< R T 0] 1 G DRSSP 94
3.8.1 Floppy Disk FOrmat ... 94
3.8.2 Specifications of FIOppY Disk ..ccccciciiincriicnnnieeevnncssnccveecvssvmsessesssessnsnns 95
3.8:3 File Mahagement saianusssissssivisismsvmsisisasesmimivsisiivisisisise 95
3.8.4 10CS Routines for FIOPPY DISKeuusseuememmeessssssssmsessessssssssssssssssssessesees 97
3.8.5 Processing at POWEr-On TIMe omimminenninisismesssmseessrssereen 103
3.9 TIMER/ANALOG PORT ...comismussvssissssiseisessssssassssissmssssasssssyisssssssvssssssssssssssissss 104
8.10 BEEP iivvvisavisnisvins T R SR SR O VIR SRR RS RR TR ES 114
3.11 TAPE RECORDERocoicrircticrinnirnireinienninsnnisesisnesssessssersssesssnssssessensassnsesansanns 117
3.11.1 PC-1600 Mode (M0OdE 0) ...cvcveerrnrerccrraresremeersnsssessnsessessmssnessnssssnsassnsassess 117

3.11.2 PC-1500/PC-1500A Mode (Mode 1) ..ccircricrnscnesmnierirensessssssssessssneenes 122

3313 Work Area Used for Cassette Tape Recorder ...vieiinsiccinninnnennes 125

U BAZ NMEMORY oooveneeesessesseseesssssssssssessssssssssssssssssss s sessssssssssessssssssssssessssssessasnsntas 127
L0 3.12.1 Slots and Memory MOGUIES ...eucercerrersceermseesssssssessessssssssssssesssnsns 127
3.12.2 Work Area Used for MEMOTY cuiceccrccnrcrmeceemceimsetestisniimsesieesineseessessnes 128
3.12.3 10CS Routines for Memory Control ...ucrircronsesrenrcnsssssenesessesssssass 130
3.13 MEMORY MODULE ... rrrrtircctinercsnsessmsssnesssnresssrs st esssssssssessssasassnsassnans 135
3.13.1 Location of Memory Moduleceereenenscnnssisssnescensenssesssncianns 135
3.13.2 Type of Memory Module ... 135
: 3.13.3 Header Structure of Memory Module ..., 136
CHAPTER 4 BASIC INTERPRETER ..o sesnsssssessssssssisens 137
4.1 FUNCTIONS HANDLING AND INTERNAL EXPRESSIONccccovimiiininrnnene 138
4.1.1 Intermediate Codes of FUNCLIONS .virrrmnereriniinmnenienininen.. 138
4.1.2 Arithmetic RegiSIers ocvicmininimiiessssnisssa-.s 140
4.1.3 Internal Expression of Numeric Values and Stringscccccecviinvennnnees 141
4.1.4 Function Operation SUbroutines ..o ienmssessscnnssenens 143
4.2 BASIC PROGRAM TEXT HANDLING ..o gennnncenssscoeen 148
4.2.1 Subroutines for Numeric Value Handling ... 148
4.2.2 Subroutines for ASCH Code CORVersion ... 149
4.2.3 Subroutines for Evaluation of EXpressions ..c..covivinnccecveenienns 150
4,24 Subroutings Fof BASIC TEXt wusuasnsasensmmsssmsmsmeisisssssssrsssssosssoss 152
4.2.5 Intermediate Code Table .ccviiierercreiircrerrrr s e 157
CHAPTER 5 OTHER FUNCTIONS AND PRECAUTIONS ..., 163
5.1 AUTOMATIC LOADING AND RUNNING OF BASIC PROGRAM FILE
{AUTORUNLBAS])octiecitrrirersnrreseersssesssssessnsssessssssssssesstssnssssssssessssssnssnessersne 164
5.2 CHANGING DISPLAY CHARACTER FONToccriiiririrniinnrecenivessecsssnssancssnnes 164
5.3 EXTENDED FUNCTION OF KEYSTAT COMMANDcc.ooerververevnrrsssnnnenns 165
5.4 SEGMENTING ONE RANM MODULE FOR DIFFERENT USEScccceivcvveenee 166
5.5 FILE FORMATcoviirirncricrnncriecneemeesnssesirsessessssnsssasssessssssesssessessassnesansssenas 167
5.6 DATA INPUT/OUTPUT TO FILE DEVICEc.cccviviinierenerenssresnriesenesns 168
5.7 PRECAUTIONS FOR USE OF SERIAL PORT (RS-232C AND SIO)cccceeeeee 171
5.8 TRANSFERRING A BASIC PROGRAM BETWEEN PC-1600 AND
OTHER MACHINE ..o vnee s ssrsssssessnssssessessassssssseens 176
5.9 MERGING PROGRAM FILEScccoooimiivinrvvercesveessenssrsssssssessssssesassnsssssees 179
5.10 SAVING AND LOADING THE RESERVE AREAcccoocevverervverrierinenvresvinnsens 180
5.11 DISABLING THE KEY INTERRUPT DUE TO ON KEY STATEMENTccoeee 181
5.12 CE-153 CONTROL UTILITY (FOR PC-1800}ccceevrrvervrernenvrerninessesssesssnesaneans 182
5.13 RST COMIMANDS OF SC-7852 {Z-80)cccccecrvrrrrerverrinneiinsenisisisssssesssssesssssenses 186
5.14 SC-7852 (Z-80) AND LH-5803 MICROPROCESSORScccvcevriveerenserensosnssnanes 187
5.15 COMPATIBILITY WITH PC-1500ccceoeriricrineererveecserssersnesmsesssrsarsssssassessenes 188
5.16 PRECAUTIONS FOR APPLICATION PROGRAM DEVELOPMENTccoevenne 191
CHAPTER 6 WORK AREA USED FOR BASIC ... 195
6.1 OVERVIEW OF WORK AREA ...t e rsnncsssee s nesssnssseevssasees 196
6.2 EXPANSION OF WORK AREA AND BUFFERcovvrrier v seerceensecnnnnenne 197
6.3 WORK AREA AP ... oorrrriircinreenisresnsennevssssseesessee sserssesssisasssssessessassssnes 200
CHAPTER 7 PC-1600 HARDWARE ... snaesssssnssnenens 207
T CPU cccrnsemsorsmomimmsssssassrasvamnsssssn Sosssiitesiinsiie it frsanssarsrarnsssanransrnsssnnnannnennsionsioi 208

7.1.2 Specifications of LH-5803 ...icciicriimniciinnmeeniinnnctnseeneessssseessssseses 215

7.1.3 Specifications of LUS7813P .cciviiiiiiiriniiennrecisenienreensissssesssnsensssssssssesans 218
7.1.4 Interface Between SC-7852 (Z-80) and LH-5803ccccrrresivnennrssnsesenane 222
7.1.5 interface Between Sub-CPU and Main CPUcccvcmnininnnieenisennessnnin 222

7.2 MEMORYooiicriiiciiiminric ot cssanr st essn s s tesssrasesssessnsesssssssssnsssnessssenssnensans 223
7.2.1 Memory Map Viewed from SC-7852 (Z-80) ...cccerrrrvesssarssnemsserssceessrensans 223
7.2.2 Memory Chip Select Signals isvmsmassmmvisiemisiiissvrisiiimmes 225
7.2.3 Memory Map Viewed from LH-5803cciimicnniniimnnenensenm, 225

7.3 LCD e eee AR et ns 226
7.4, KEYBOARD cconvmmmesmvissmrmssunismissssssisssssssssiasemsssvsssinssisisaumiassesisaesssvasi 227
7.5 BUZZERccovvrrievrensiesanssmnnsrarcrainssisinisssessiissoans sibivhinnsa Sissssssississs sbssisasssnisssnense 227
7.6 RS-232C/SIO INTERFACE ...t ecrsernsssnssessseeesssssstssessersssssnssessssns 227
7.7 POWER SUPPLY .vioiovsmnvesvensvsnsaressssssnssssionsssessssssesrats s issmssiss shisssssssasesssasesissssss 231
7.7.1 Kinds of SUPPIY VOHAQES ...ceirvcririeinemrectrsscmernescnsriseessesssssssnnssssnsens 231
7.7.2 Kinds of POWEr SUPPHES cvcevreireeercrrercersiesrerecseseeserrsosssassrsnstsssmsnersssenses 231

7.8 GATE ARRAY ...t nirennee s s ins s e st ses s sessssssssmsssse st sennsntsssssanessasss 232
7.9 CONTROL OF I/0 PORT CONTROLLERooomiiicpn e 234
CHAPTER 8 HARDWARE OF PERIPHERAL DEVICES ... 237
81 GE-TB00P suvuussissssinsssiusssumsssnsssnssssisssaissssvassvasvivisssassvatissssviviessssmevsrssasssmsivsansuss 238
8.2 CE-1600F/CE-T650Fcoccciiireiiirerinirinieerisnerssesinnesvasessnnssnsessasessanssssesssnssassenses 245
8.3 CE-T600Mc..eciiiiinciiiniinnensiincesnersseseestssenssesasrssessaesssessnsssssensssnsssssssnssnsasasassenes 248
8.4 CE-1620M/CE-1601E/PROM PROGRANMMIERccooeevvererrcressenrvenesrsecnens 251
8.5 CE-TBOOL/CE-180TTcoiiiiiiiiiceesisiensimresnesssensseeresseecsnsersanasssssesasnessnsersnsssaneses 260
8.6 CE-1601L ... CE-TB0BLouicivvmriininimncrersiiisenmmscnresssssssrisnieerarsassueasssresssassssenses ‘260
2 4 1 N PP 261
CHAPTER 9 CIRCUIT DIAGRAM ... ceeeessseessstossessssssisessssessasssesssesanns 263
9.1 CIRCUIT DIAGRAM OF PC-1600cccocovirrneninninnrsinsreessissesossnessssaesessassssenssmses 264
9.2 CIRCUIT DIAGRAM OF PERIPHERAL DEVICEScocvemrecresirineessessessnensennens 268
CHAPTER 10 APPENDICES ...ttt cesneseeseeessseseeesessssssessssssssssssssn 273
10.1 CHARACTER CODE TABLE ... rercvreseririrrsesscssssessessn e ssesssssessssemsssssnes 274
10.2: KEY CODE TABLE iiicsisuisossussssssnsonsssasssssassassevsisoisstn i5a1s s actifonsusnefiessessenasasens 275
10.3 CONNECTOR PIN CONFIGURATIONcc.oovoertiercsinieesseresssssssssssnssessssesesses 278
10.4 Z-80 MNEMONIC CODESooceiirerecnrcesseneevseessssssessessesssssssssssssesssesnees 281
10.5 MINEMONIC CODES OF LH-B803ccconmireenininniesiessesessssssessssssesssssesnssessers 297

CHAPTER 1
SYSTEM
CONFIGURATION

SYSTEM CONFIGURATION

The PC-1600 can be connected with various kinds of optional peripheral devices. The following figure
shows the system configuration of the PC-1600 and these peripherals. Since the system bus of the
PC-1600 is compatible with that of the PC-1500 serial, the PC-1600 can use most of the PC-1500/PC-

1500A peripheral devices.

PC-1600 System Configuration

CE-1600P Printer with Cassette Interface

Tape recorder connection cables
(standard accessories of CE-1600P)

ISE
L o o Cassette Recorder

e 8] | l Parallel Printer I
CE-152
Cassette Recorder

CE-1600F Floppy Disk Drive

\
\ CE-1600L
\ Optical

\
\ Fiber Cabie .
\ e CE-1602T
S10/RS232C Converter|

— il !
’ lel SHARP PC-1600 \\ Optical
CE-162E Parallel and E - \ ptica
; et !
Cassette interface Unit CE-1650F Pochetcomputed \ Serial Port BTN
Floppy Disk l I
Que—
sEes s s s |on. 20 Ana[og
Ooo0o0o0coga00o0n
ooocoooooo 00Doo Input Port I [] ‘
&3 oocoooooon 20000 s
ooooconocS DOD0D §| ¢ ——— ©
_ ISlotz siot 1 7 s =
I 7 ¥
CE-158 Serial and ! ' / 5 Céi 1FOA g
Parallel Iinterface Unit ! / ar-code pen reader
,‘ RAM Modules / utility program
| iE==d ;
,' CE-161 CE-151 /
! CE-1600M Cez‘gg /
| cee2m geer /

CE-1600M
CE1620M
/

{
— =] Y /
/ CE-152
E / Cassette Recorder
Tape recorder connection

J l\ cables (standard accessories
: - f CE-150)
CE-150 Printer with Cassette Interface ~ ©
CE-516L
CE-515P Printer O Cable
CE-516P Printer
CE-1 gIO‘IL
Acoustic Coupler Ca e
or Direct Modem DD
CE-‘I g?ZL
MZz-5500, MZ-5600 Ca e
Personal Computers DQ
CE-1603L

PC-5000 Portable Computer Cable
CE-158 Serial and mD—a: G

Parallel Interface Unit CEC-‘I g?‘ﬂ.
PC-7000 Personal Computer () able
<G
1BM Personal Computer
CE-1605L
Cable
Open _(.)_g L e

Note: Connection of CE-1600F requires CE-1600P.
CE-158 and CE-162E cannot be connected to CE-1600P.

{1) Peripheral devices for PC-1600

CE-1600P:
CE-1600F:
CE-1600M:
CE-1650F:
CE-1602T:
CE-1600L:
CE-1601L:
CE-1602L:
CE-1603L:
CE-1620M:
CE-1601N:
CE-1FO1A:
CE-1604L:
CE-1605L:

Ad-size 4-color plotter-printer

2.5-inch floppy disk drive

32KB RAM module

2.5-inch floppy disk package (10 disks)
SI0/RS-232C converter

Optical fiber cable

Cable for modem/acoustic coupler
RS-232C cable for MZ-5600 and MZ-5500
RS-232C cable for PC-5000 and CE-158
PROM module (32KB ROM)

Bar-code pen reader

Bar-code pen reader utility program (floppy disk)
RS-232C cable for IBM-PC and PC-7000
RS-232C cable (open end)

(2) Peripheral devices for PC-1500

CE-150:
CE-151:
CE-152:
CE-1565:
CE-158:
CE-159:
CE-161:
CE-162E:

Note: CE-150 and CE-158 cannot be used together with CE-1600P.

Color graphics printer
Memory module (4KB RAM)
Cassette tape recorder
Memory module (8KB RAM)
RS-232C/Parallel interface
Program module (8KB RAM)
Program module (16KB RAM)
Parallel/Cassette interface

SYSTEM CONFIGURATION

a

Z-80 MACHINE
PROGRAMS AND
LOAD AREA

CHAPTER 2
LANGUAGE

Z-80 MACHINE LANGUAGE PROGRAMS AND LOAD AREA

2.1 Memory Map
The following figure shows the PC-1600 memory map viewed from SC-7852 (Z-80). As shown in the
figure, the memory space is extended by the bank switching. The bank switching is accomplished in
the way: the 64KB memory space of Z-80 is segmented into four 16KB areas, and to each area is
allocated one of the memory blocks {16KB/block) belonging to thaf area. Refer to section 3.12.3 for the
bank switching procedures.

Address
0000 H
Internal
ROM
4000 H =
Moduie CE-1600P
In;grlaal Slot 2 internal} printer Unit
() ROM ROM
8000 H
Module Module Internal
Slot 1 Slot 2 ROM
A B C D
CO00 H {A) {B) {C)] (D) ____l______
Internal | H !] i - [
RAM
FFFFH
. [l \ ' i 1 '
Bank No. 0 1 2 3 4 5 6

Overali Memory [Viewed from Z-80A processor]

Address
0000 H
Module Module
Slot 1 Slot 2
4000 H i
|
Internal : ! :
RAM : | :
8000 H -
CE-158 CE-158
ROM ROM
ADOO H
CE-150 ~f CE-150 '
ROM ROM
COoO H
Internal h) !
ROM
FFFFH
Bank No.] 1 2 3

Overall Memory [Viewed from LH-5803 Sub-Processor]

Z-80 MACHINE LANGUAGE PROGRAMS AND LOAD AREA

The PC-1600 can address 8 mermory banks (bank 0 to bank 7). The first four banks are allocated to
RAM. Banks 4 to 6 hold internal system ROMs and peripheral memory. Bank 7 is unused, but is

addressable.

®

Address
CO00H
Header
Coo8H
Reserve Program Area
COC5H 3
[Allocatable]
Machine Program Area
________ i_]
BASIC Program Area
_____________ g 1§, User Area
11834 Bytes
A $ _______
Variables Area
(FOOO H) J
_ Work Area
FFFFH
Bank 0

Internal RAM [Viewed from Z-80A Processor]

With no modules in the expansion slots, the internal RAM has 11834 bytes of user area. The above
memory map shows some of the user area allocated for machine language programs. This machine
program area can be set to 0 with the NEW Command.

2.2 BASIC Commands Related to Machine Language

(1) NEW command
To use the machine language, reserve a machine language program area with. NEW command.

IISO: n
NEW {“S1:"; ,<expression>
1182: "

where <expression> specifies a value of (the desired machine language program area size in
bytes) plus C5H.

When this command is executed, the memory area from the the starting address of the memory
in the slot plus C5H to the memory starting address plus <expression> minus 1 is allocated for
the machine language program area.

(Example)

When CE-159 and CE-1600M are set respectively in slots 1 and 2, both as the program module.

Z-80 MACHINE LANGUAGE PROGRAMS AND LOAD AREA

Bank 0 Bank 1 Bank 2 Bank 3

8000

A0CC

€000

FFFF

When the following NEW commands are executed:

NEW “S1:”,&1000
NEW “S2:",&5000
NEW “S0:”,&1000

the following memory areas can be used for the machine language program:

Bank 0: AOC5H to AFFFH
Bank 2: 80C5H to BFFFH
Bank 3: 8000H to 8FFFH

Bank 0: COC5H to CFFFH

(2) PEEK command
PEEK #(<bank>,<expression>)
This command reads the contents of the memory address specified by <expression> of the
specified <bank>.
If the memory address you want to read is between C000H and FFFFH, you can use the following
format: PEEK <expression>

(3) POKE command
POKE [#<bank>,]<expression 1>,<expression 2>,<expression 3>...
This command writes data items specified by <expression 2>, <expression 3> ... consecutively
into the memory area whose bank and starting address are specified respectively by <bank> and
<expression 1>.
If no bank is specified, bank 0 is selected.
{(Exampile)
When the following command is executed:
POKE &C700,&01,802,&03
data (01H, 02H and 03H) are written into the memory as follows.

Address Data
C700H 01H
C701H 02H
C702H 03H

Z-80 MACHINE LANGUAGE PROGRAMS AND LOAD AREA

{4} CALL command

CALL [#<bank>,]<address>[,<variable>]

This command executes a machine language program that is stored in the memory area whose

bank and starting address are specified by <bank> and <address>.

Control returns from the machine language program when RET command is executed.

If no bank is specified, bank 0 is selected.

If <variable> is a numeric variable {value: —32768 to 32767), the following operations are

executed:

{1) transfer the value of the variable to DE register,

{2) execute the machine language program, and

{3) when returning from the machine language program, if there is a carry, transfer the contents
of DE register to the specified variable.

If <variable> is a string variable, the following operations are executed:

{1} transfer the starting address of the string variable to DE register,

{2} execute the machine language program, and

{3} when returning from the machine language program, if the carry flag is 1, transfer the
character string whose starting address is specified by DE register and whose length is
specified by B register into the string variable.

n

Z-80 MACHINE LANGUAGE PROGRAMS AND LOAD AREA

Machine Language Programs
The PC-1600 can be programmed directly in Z-SQA Assembler code by the advanced programmer.

BASIC Machine Language Related Commands
BASIC supports a number of commands to load, save, access and call machine language routines, or
to control the machine I/O ports directly. Some of them address the main Z-80A processor, and some

address the LH-56803 sub-processor. They are:

BLOAD, BSAVE, CALL, CLOADM, CSAVEM, INP, OUT, PEEK, POKE, XCALL XPEEK, XPEEK#, XPOKE,
XPOKE#

Memory Allocation for Machine Language Programs

Internal RAM can be allocated for machine language programs with the NEW command, which sets
the lower address of the BASIC program area. The user can also access system utilities in other
memory areas, or the peripheral device ROMs, but this needs a detailed knowledge of the memory
allocation of the PC-1600 above the covered in this manual.

Compatibility with the PC-1500
The following table lists the PC-1600 machine language related commands which are different from

the PC-1500 command set:

PCAB00 PCA500 FUNCTION

XCALL CALL Runs machine language program for LH-5801/3 sub-processor.

CALL Runs machine language program in PC-1600's main processor (Z-80A).
XPOKE POKE Writes data to LH-5801/3 memory space.

POKE Writes data to main Z-80A processor memory space.

XPEEK PEEK Reads data from LH-5801/3 memory area.

PEEK Reads data from main Z-80A processor memory area.

XPOKE# POKE# Sends data byte to LH-5801/3 machine I/O port.

XPEEK# PEEK# Returns data byte from LH-5801/3 machine I/O port.

CHAPTER 3

10CS

14

10CS

The PC-1600 has many 10CS routines that perform various kinds of basic input and output operations
of the PC-1600. The user may use these routines to efficiently develop a machine language program.
The entry addresses of the I0CS routines will not be changed even when the PC-1600 BASIC
interpreter is up-versioned in the future. Use the IOCS routines for access to the I/O. If you write a
program that directly access the VO (i.e., a program that accesses the /O with OUT and IN (INP)
commands without 10CS routines), the program may not run properly on a new machine that will be
released as a up-graded model of PC-1600. The I0CS routines described in this manual are all for the

SC-7852 (Z-80) mode.
The terms used in the explanations of the IOCS routines have the following meanings:

¢ Entry address
Most of the 10CS routines are executed by directly calling the entry address of each routine.

e I0OCS number
Some of the I0OCS routines are executed by calling a certain address with the particular 10CS

number set in C register.
¢ Function
Describes the operation of the IOCS routine.

¢ Parameter
Some IOCS routines require the parameter that prescribes the operation of the routine. Set the

parameter in memory or registers before calling the routine.

® Return
Some lOCS routines return data when the routine is completed and control returns from the

routine. These return data are set in memory or registers.

e Affected register
When a routine is executed, the contents of some registers or memory locations are destroyed.

3.1 DISPLAY
3.1.1 IOCS Routines for LCD

The following table lists the names, functions and entry addresses of the IOCS routines. Use the
following format to call up these |0CS routines:

CALL Entry-address
The LCD related I0CS routines are for displaying data on a single line only: the data are not displayed
over more than one line.

Name Entry address Function

PRTANK 0100H Display one character.

PRTASTR 0OEBH Display a string of characters.

CRSRSET 0115H Set the cursor position.

CRSRPOS 0118H Read the current cursor position.
CRSRSTAT 011EH Specify the cursor type.

UPSCRL 012DH Scroll up the screen.
DWNSCRL 0130H Scroll down the screen.

INSTLN 0142H Insert a blank line.
ERS1LN 0145H Erase the contents of a line.

Name Entry address | Function
ERSSTR 013FH Display a specified number of spaces.
SMBLSET 013CH Set the state of the status line symbols.
SMBLREAD 0139H Read the state of the status line symbols.
RVSCHR 011BH &Za:e%z:ls'\s_sii;ggazqgg:string of characters currently on the screen to
SETANK 0109H Set the display to the character mode.
DOTSET 0127H Display a dot in the set/preset/reverse mode.
DOTREAD 012AH Read the display state of a dot.
LINE 0121H Draw a line.
BOX 0124H ' Draw a box.
GCRSRSET 014BH Set the graphics cursor position.
GCRSRPOS 0148H Read the current graphics cursor position.
PRTGCHR 014EH Display a character at the current graphics cursor position.
PRTGSTR O0OEEH Display a string of characters from the current graphics cursor position.
PRTGPTN 0154H Display a 1 x 8 dot pattern at the current graphics cursor position.
GPTNREAD 015AH [Read the 1 x 8 dot pattern at the current graphics cursor position.
CGMODE 0133H 3 t(;\t;asgig%%c:]i?;ter generator mode between the PC-1500 mode and
CPY1500LCD 0157H Eggyﬁ'cglt\aﬂf:ontents of the fourth line of the screen to the PC-1500 mode
CLS 0112H Clear the screen display.
BSPCTR 00ESH Enable/disable the LCD.
SAVELCD 015DH Save the 156 x 8 dot pattern of the specified line to RAM.
LOADLCD 0160H ‘ Load the 156 X 8 dot pattern from RAM to the specified line.

40

10CS

PRTANK

Entry Address

Function

Parameter
Return

Affected Register

PRTASTR

0100H

Display the character of a character code set in A register at the current cursor
position, then move the cursor one column to the right. If the character is
displayed at the right most column of the screen (i.e., if the X coordinate of the
current cursor position is 25), then CF is set to 1, the cursor display is turned off,
and the cursor remains at the same position.

A = Character code
CF = 1 if the character is displayed at the right most column of the screen.

AF, CRSRX (Cursor X coordinate: FOB0H), CRSRST (Cursor type: FO67H)

Entry Address

Function

Parameter

Return

Affected Register

Example

00EBH

Display consecutively from the current cursor position a string of characters
whose character codes are stored in consecutive memory locations. This routine
displays starting from the beginning of the contents of the memory locations
whose starting address is given in DE register pair until it encounters a character
whose code is given in A register (this code is not included in the screen display).
If the routine displays characters up to the right most column of the screen, then
CF is set to 1, the cursor display is turned off, and the cursor remains at the right
most position.

DE = Starting address of the memory locations that contain the character codes

A = Character code of the character (when the routine encounters this code, it
terminates the current display operation, not including that code in the
screen display.)

DE = (Address of the memory location which contains the character code of the
character last displayed) + 1
CF = 1 if a character is displayed at the right most column of the screen.

AF, DE, CRSRX (Cursor X coordinate: FOB0H), CRSRST (Cursor type: FO67H)

When character codes (41H, 42H, 43H and 44H) are stored in memory locations
from COOOH to COO3H, set

DE = COO0OH

A = 44H
and execute

CALL 00EBH
then “ABC” is displayed consecutively from the current cursor position on the
screen. (The letter “D” (code 44H) is not displayed.)

<4 2

CRSRSTAT

I0CS

Entry Address
Function

Parameter

Return

Affected Register

CRSRPOS

011EH

Specify whether or not to display the cursor, and the cursor type if displayed.
A=00H: Turn off the cursor display.

A=01H: Display the underline cursor.

A=02H: Display the square cursor in blinking.

A=03H: Display the space cursor in blinking.

none

CRSRST (Cursor type: FO67H)

Entry Address
Function
Parameter

Return

0118H
Read the current cursor position. (Character mode)
none

D = Cursor X coordinate
E = Cursor Y coordinate

Affected Register DE
CRSRSET
Entry Address 0115H
Function Set the cursor position. {Character mode)
Parameter D = Cursor X coordinate
E = Cursor Y coordinate
Return CF = 1if the specified position is out of the displayable range of LCD.

Affected Register

AF, CRSRX {Cursor X coordinate: FO60H), CRSRY (Cursor Y coordinate: FOSFH)

1R

10CS

UPSCRL

Entry Address

012DH

Function Scroll up the screen one line. The bottom line is cieared and the cursor display is
turned off.

Parameter none

Return none

Affected Register none

DWNSCRL

Entry Address 0130H

Function Scfoll down the screen one line. The top line is cleared and the cursor display is
turned off.

Parameter none

Return none

Affected Register none

INS1LN

Entry Address 0142H

Function Insert one blank line at the specified line position of the screen. The screen
contents on that line and the below are scrolled down one line. The cursor
display is turned off.

Parameter A = Line position (0 to 3)

Return none

Affected Register AF

1R

I0CS

ERSILN

Eniry Address 0145H

Function Clear the specified line of the screen. The line remains as a blank line.
Parameter A = Line position (0 to 3)
Heturn none

a#ected Register AF

ERSSTR

Entry Address 013FH

Display as many space characters as specified by the number given in B register,
from the specified position of the screen.

Farameter A = 0: Character mode
D = X coordinate of the screen position
E = Y coordinate of the screen position
A = 1: Graphics mode
DE = X coordinate of the screen position
HL =Y coordinate of the screen position
B = Number of spaces

Geturn CF = 0: Normal termination
1: Some of the specified number of spaces could not be displayed. B
register stores the number of the spaces that could not be displayed.

i#acted Register AF, BC, DE

Zzmarks The position and state of the cursor remain unchanged.

SMBLREAD

Emtry Address 0139H

wiion Read the state of the status line symbols.
The state of a set of symbols specified by B register is read into A register.

17

10CS

Parameter B = Symbol set number (0 to 2)
B = O0H DEF 1 it I |SMALL SHIFT | BUSY
RES
B = 01H RUN | PRO | oo RAD G DE
Low
B = 02H KB I CTRL | attery
MSB LSB
Content of A register 1=0N
Return A = State of symbols

(If a bit of A register is 1, this means the symbol corresponding to that bit is
displayed on the status line of the screen. If a bit.is 0, the symbol is not
displayed.)

Affected Register AF

SMBLSET

Entry Address 013CH

Function Set a set of symbols specified by B register to the state specified by A register.

Parameter B = Symbol set number (0 to 2)
A = Symbol state (expressed by bit pattern)

B = 00H DEF | 1. I m |SMALL SHIFT | BUSY
B =01H / RUN | PRO EF:EVSE RAD | G DE
B = 02H KB E CTRL b;;‘:ry
MSB LsB
Content of A register 1=0N
Return none
Remarks - If either of KBII or § is set to 1,] symbol is displayed.

40

I0CS

RVSCHR

Entry Address 011BH

Function Change the display of a string of characters currently on the screen to the
reverse-video mode. (Character mode)

Parameter D = X coordinate of the beginning of the string
E = Y coordinate of the beginning of the string
A = Number of the characters to be displayed in reverse video

Return CF = 1 if the specified coordinates are out of the range.

Remarks The cursor display is turned off.

SETANK

Entry Address 0109H

Function Set the display mode to the character mode and move the cursor to the home
position (0,0).

Parameter none

Return none

Affected Register CRSRX (Cursor X coordinate: FOB0H), CRSRY (Cursor Y coordinate: FO5FH)

DOTSET

Entry Address 0127H
Function Give the same function as the PSET commands of BASIC.

Parameter DOTSOP (FO96H) = 00H: Dot set
01H: Dot reset
02H: Invert the current dot state
X1POS (FO8EH=low byte; FO8FH=high byte)
= X coordinate (—32768 to 32767)
Y1POS (FO90H=Ilow byte; FO91H=high byte)
= Y coordinate (—32768 to 32767)

Return none

19

10CS

Affected Register AF, LINPTN (FO97H, FO98H), DOTSOP (FO96H)

Remarks The effective dot addresses of the screen are: 0 < X < 155 and 0 < Y < 31,
Specifying a dot address out of these ranges causes nothing.
Specify X and Y coordinate values in two bytes each {a negative value in the
complement expression). That is, 0 to 32767 is expressed as 0000H to 7FFFH, and
—32768 to —1 as 8000H to FFFFH.

Example The following will give the same results as the PSET(100,11),X statement in
BASIC.
POKE &F08E,864,&00,&08,&00
POKE &F096,&02
CALL &0127

LINE

Entry Address 0121H

Function Give the same function as the LINE command of BASIC.
Parameter DOTSOP (FO96H) = 00H: Dot set

01H: Dot reset

02H: Invert

X1POS (FOS8EH=Ilow byte; FO8FH=high byte)

= X coordinate of the starting point (—32768 to 32767)
Y1POS (FO90H=Ilow byte; FO91H=high byte)

= Y coordinate of the starting point (—32768 to 32767)
X2POS (F092H=low byte; FO93H=high byte)

= X coordinate of the end point (—32768 to 32767)
Y2POS (FO94H=iow byte; FO95H=high byte)

=Y coordinate of the end point (—32768 to 32767)
LINPTN (FO97H=Ilow byte; FO98H=high byte)

= Line pattern

Return X1POS = Contents of X2POS
Y1POS = Contents of Y2POS
LINPTN = Line pattern to be drawn next time (the line pattern made by rotating
the line pattern used this time one dot to the left)

Affected Register AF, BC, DE, HL, X1POS, Y1POS, LINPTN

Remarks The effective dot addresses of the screen are: 0 < X < 155 and 0 < Y < 31.
Specify X and Y coordinate values in two bytes each (a negative value in ths
complement expression). That is, 0 to 32767 is expressed as 0000H to 7FFFH, ang
—32768 to —1 as 8000H to FFFFH.

Make a line pattern (LINPTN) in the same manner as for the LINE commang of
BASIC.
For example, to make the following line pattern:

on

I0CS

write ADA9H in LINPTN (i.e., write A9H in FO97H and ADH in FO98H.)

Example The following will give the same results as the LINE(—5,—3)-(100,50),,&ADAS
statement in BASIC.
POKE &FO8E,&FB,&FF,&FD,&FF,&64,&00,&32,800
POKE &F096,&00,&A9,&AD
CALL &0121
DOTREAD
Entry Address 012AH
Function Give the same function as the POINT command of BASIC,
Parameter X1POS (FOBEH=Iow byte; FOBFH=high byte)
= X coordinate {in graphics mode)
Y1POS (FO90H=Ilow byte; FO91H=high byte)
=Y coordinate (in graphics mode)
Return A = 00H: A dot is not currently displayed at the specified point on the screen.

Affected Register

01H: A dot is currently displayed at the specified point on the screen.

AF

Remarks If the specified point is out of the displayable range of the screen, the routine
returns A=00H.
Specify X and Y coordinate values in two bytes each (a negative value in the
complement expression). That is, 0 to 32767 is expressed as 0000H to 7FFFH, and
—32768 to —1 as 8000H to FFFFH.

PRTGCHR
014EH

Entry Address

Eunction

Display a character whose character code is given in A register at the current
graphics cursor position, then move the graphics cursor 6 dots to the right {i.e.,
add 06H to the X coordinate of the graphics cursor.)

21

10CS

Parameter

Return

Affected Register

SAVELCD

A = Character code

DOTSOP-(FO96H)
= 00H: Display the new character pattern, erasing the previously displayed 6

X 8 dot pattern.
= 01H: Display the ORed pattern of the new character pattern and the

previously displayed 6 x 8 dot pattern.
= 02H: Display the XORed pattern of the new character pattern and the
previously displayed 6 X 8 dot pattern.

none

AF, GCRSRX (Graphics cursor X coordinate: FO99H=low byte; FOSAH=high byte)

Entry Address

Function

Parameter

Return

Affected Register

Example

015DH

Save the contents (the bit image data of 156 bytes) of a screen line specified by A
register, into the sequential memory locations whose starting address is specified
by DE register.

DE = Starting address of the memory locations in which the line data are saved
A = Line position on the screen {00H to 03H: 00H designates the first line of the
screen.)

none
AF, DE

The following will save the contents of the first line of the screen to the memory
locations from EOOOH to EQ9BH.

LD DE, EOQOH

LD A, O0H

CALL 015DH
LCD

777777777777 777777

55

(=}

-

N
\\

Memory

T i
EO0OH E09SBH

29

PRTGSTR

10Cs

€ntry Address

Function

Parameter

ected Register

SRTGPTN

OOEEH

Display consecutively from the current graphics cursor position a string of
characters whose character codes are stored in consecutive memory locations.
This routine displays starting from the beginning of the contents of the memory
locations whose starting address is given in DE register pair until it encounters a
character whose code is given in A register (this code is not included in the
screen display).

DE = Starting address of the memory locations that contain the character codes
A = Character code of the character {(when the routine encounters this code, it
terminates the current display operation, not including that code in the
screen display.)
DOTSOP (FO96H) .
= 00H: Display the new character patterns, erasing the previously displayed
6x8 dot patterns.
= 01H: Display the ORed patterns of the new character patterns and the
previously displayed 6x8 dot patterns.
= 02H: Display the XORed patterns of the new character patterns and the
previously displayed 6x8 dot patterns.

DE = (Address of the memory location which contains the character code of the
character last displayed) + 1
GCRSRX = X coordinate of the graphics cursor for the next display position

DE, AF, GCRSRX (FO99H=Ilow byte, FO9AH=high byte)

#ry Address

ction

meter

0154H
Display the content of A register as a 1 x 8 dot pattern at the current graphics
cursor position, then move the graphics cursor one dot to the right (i.e., add 01H

to the graphics cursor X coordinate.)

A = Dot pattern

[Example of dot pattern] __X__> Current graphics cursor position

\

}

A register
1=0N
! 0 = OFF
!

100 1T 1T 1T 0 1 A=9DH
MSB LSB

N9

10CS

DOTSOP (FO96H)
= O0H: Display the new 1 X 8 dot pattern, erasing the previously displayed 1
X 8 dot pattern.
= 01H: Display the ORed pattern of the new 1 X 8 dot pattern and the
previously displayed 1 x 8 dot pattern.
= 02H: Display the XORed pattern of the new 1 X 8 dot pattern and the
previously displayed 1 X 8 dot pattern.

Return none

Affected Register AF, GCRSRX

GPTNREAD

Entry Address 015AH

Function Read the 1 x 8 dot pattern from the current graphics cursor position toward the
positive direction of Y axis into A register.
The dot pattern is read into A register in the same manner as described in
“Example of dot pattern” of PRTGPTN routine. If part of the 1 X 8 dot pattern to
be read exceeds the screen area, those dots of the exceeded part are read to be 0.

Parameter none

Return A = One binary byte expressing the dot pattern

Affected Register AF

CGMODE

Entry Address 0133H

Function Change the character generator mode between the PC-1500 mode and the
PC-1600 mode.

Parameter A = 0: PC-1600 mode

1: PC-1500 mode
Return none

Affected Register

AF, LCDWK1 (FO5DH)

ni

10CS

CPY1500LCD

£niry Address 0157H

Function Copy the contents of the fourth line of the screen (dot pattern of 156 bytes) to the
PC-1500 display RAM (7600H to 764FH; or 7700H to 774FH (address on LH-5803))
with the bit configuration changed for the PC-1500 format. The state of the status
line symbols is also copied.

rameter none

furn none

scted Register none

CRSRPOS

viry Address 0148H
<tion Read the current graphics cursor position.

zameter none

DE = X coordinate (—32768 < X < 32767)
BC = Y coordinate (—32768 < Y < 32767)

cted Register DE, BC
smarks X and Y coordinates are returned as a two-byte value {a negative value in the

complement expression). That is, 0 to 32767 is expressed as 0000H to 7FFFH, and
—32768 to —1 as 8000H to FFFFH.

80X

=try Address 0124H
Draw a box with the inside filled in.

rameter DOTSOP (FO96H) = 00H: Dot set
01H: Dot reset
02H: Invert
X1POS (FOBEH=low byte; FOBFH=high byte)
= X coordinate of the starting point of the diagonal (—32768 to 32767)

NR

10CS

Return

Affected Register

Y1POS (FOS0H=Ilow byte; FO91H=high byte)

= Y coordinate of the starting point of the diagonal (—32768 to 32767)
X2POS (F092H=low byte; FO93H=high byte)

= X coordinate of the end point of the diagonal (—-32768 to 32767)
Y2POS (FO94H=low byte; FO95H=high byte)

= Y coordinate of the end point of the diagonal (—32768 to 32767)
LINPTN (FO97H=low byte; F098H=high byte)

= Line pattern

X1POS = Contents of X2P0OS

Y1P0OS = Contents of Y2POS

LINPTN = Line pattern to be drawn next time (the line pattern made by rotating
the line pattern used this time one dot to the left) :

AF, BC, DE, HL, X1POS, Y1POS, LINPTN

Remarks The effective dot addresses of the screen are: 0 < X< 155 and 0 < Y < 31.
Specify X and Y coordinate values in two bytes each (a negative value in the
complement expression). That is, 0 to 32767 is expressed as 0000H to 7FFFH, and
—-32768 to —1 as 8000H to FFFFH.

Make a line pattern (LINPTN) in the same manner as for the LINE command of
BASIC.
For example, to make the following line pattern:
B N TN TN T e
write ADASH in LINPTN (i.e., write A9H in FO97H and ADH in FO98H.)

Example The following will give the same results as the LINE(—5,—3)—(100,50),,&ADA9,BF

statement in BASIC. :
POKE &FOSE,&FB,&FF,&FD,&FF,&64,&00,&32,&00
POKE &F096,&00,&A%,&AD
CALL &0124

GCRSRSET

Entry Address 014BH

Function Set the graphics cursor position.

Parameter DE = X coordinate (—32768 < X < 32767)

BC = Y coordinate (—32768 < Y < 32767)

Return none

Affected Register

Remarks

GCRSRX, GCRSRY

Specify X and Y coordinate values in two bytes each (a negative value in the
complement expression). That is, 0 to 32767 is expressed as 0000H to 7FFFH, and
—32768 to —1 as 8000H to FFFFH.

I0CS

0112H

Clear the screen display.
none

none

none

The cursor display is turned off.

O0CE5H

Enable/disable the LCD.

A = 01H: Enable the LCD.
O00H: Disable the LCD.

07

none
i Register AF
\DLCD
Address 0160H
Function Load 156 bytes of data from the sequential memory locations whose starting
address is specified by DE register, as the 156 x 8 dot pattern to a screen line
specified by A register.
Parameter DE = Starting address of the memory locations from which the 156x8 dot pattern
are loaded
A = Line position on the screen (00H to 03H)
Return none
Affected Register AF, DE

[0CS

3.1.2 Work Area used for IOCS Routines for LCD

Work name | Address Bytes Z Description
The bits of FO5DH have the following meanings.
§ Bit 2: Specifies the selected character font set.
| = PC-1600 font
! = PC-1500 font
Bit 3: Specifies whether or not to use the character font of the character
codes 00H to 1FH.
0 = The character codes 00H to 1DH and 1FH are processed as a
LCDWK1 FO5DH ! space, and 1EH as an insert mark “__}".

1 = The character font for the codes O0H to 1FH uses the
user-defined character font data that are stored in the memory
focations specified by CTRCGA and CTRCGB.

Bit 4: Specifies the cursor blinking speed. '
0 = Normal speed
| 1 = Double speed
-
CRSRX FOB0H 1 ‘! Cursor X coordinate
CRSRY FO5FH 1 Cursor Y coordinate
(U0 Starting address of th locati hich in the ch
(Low byte) tarting address of the memory locations which contain the character
CTRCGA FOB2H 2 font data for the character codes 00H to 1FH
(High byte) | {The starting address must be greater than 8000H.)
| Bank number (0 to 7) of the memory locations which contain the
CTREGE FOB3H 1 character font data for the character codes 00H to 1FH
FOBaF Starting address of th locati hi in th
(Low byte) arting address of the memory locations which contain the character
UPAGGA FOB5H 2 font data }‘or the character codes 80H to FFH
(High byte) | (The starting address must be greater than 8000H.)
i i
! Bank number {0 to 7) of the memory locations which contain the
LPRGGE FOGEH t L character font data for the character codes 80H to FFH
‘ Cursor type
: 00H = Cursor display OFF
CRSRT FOG67H 3 1 01H = Underline cursor
i 02H = Blinking square cursor
é 03H = Blinking space cursor
i SO
FOBEH
(Low byte) |
X1POS FOSFH | 2
(High byte) 11
FOSOH | |
(Low byte) !
Y1POS FO91H 2 ;
| (High byte) |
Fog2H |
(Low byte)
X2P0OS F093H 2
(High byte)
FOS4H
{(Low byte)
Y2P0OS FO95H | 2
(High byte) | |
| 00H = Dot set
DOTSOP FO96H 1 G1H = OR or dot reset
02H = XOR or invert

t0CS

[0CS

Work name

Address

Bytes

Description

LINPTN

FO97H
(Low byte)
FO98H
(High byte)

Line pattern

GCRSRX

FO99H
{Low byte)
FO9AH
(High byte)

|

Graphics cursor X coordinate

GCRSRY

FO9BH |
(Low byte)
FO9CH

(High byte) |

Graphics cursor Y coordinate

3.1.3 Character Font
The character fonts used in PC-1600 are composed of 6 by 8 dots each and the character font data are
stored in the character generator table in the following format: each 8-dot column of one character
font is expressed in one byte and one character font is formed by arranging six column data (6 bytes)
from the left end to the right end of the font. (See the figure below.)

Font data in character
generator table

» 3EH

¥ 41H

> 41H

B 49H

B 39H

> 00H

Higher address

end

The PC-1600 has three character generator tables:
(1) Character generator table for those characters of codes 20H to 7FH
This table is in the main ROM and the fonts of these characters cannot be changed by the user.
(2) Character generator table for those characters of codes 80H to FFH
This table is in the main ROM. The user can use different fonts for these codes by preparing

user-defined fonts in RAM and changing the contents of UPAGGA and UPAGGB.

(3) Character generator table for those characters of codes 00H to 1FH
No font data exist in the main ROM. The user can define his own fonts for these codes: prepare
user-defined fonts in RAM, change the contents of CTRCGA and CTRCGB, and set bit 3 of LCDWK1

tO 111 "‘

As described above, the user can change the character generator tables (2) and (3) to the
user-defined tables prepared in RAM. In this case, since all character fonts of the codes assigned
to each table are to be changed, the user must prepare font data for all of these codes in RAM.

10CS

3.2 KEY INPUT
3.2.1 I0CS Routines for Key input

The following table lists the names, entry addresses and functions of the IOCS routines for key input.
Refer to section 10.2 for the key codes and the codes handled in the key buffer.

Name Entry address Function
' Read one character from the key buffer. If the key buffer is empty, the
KEYGET 0166H routine waits for a key input.
Same function as KEYGET except the routine does not wait for a key
KEYGETR 0169H input even if the key buffer is empty.
KBUFSET 016CH Load data into the key buffer or clear the key buffer.
BREAKCHK 016FH Read the state of the BREAK key.
CURUDCHK 0172H Read the state of the [I] or [T] key.
KEYDIRECT 0175H Scan the keys and read the key code of the key that has been pressed

when the routine is called.

Scan one row of keys to identify a particular one of more than one key

KEYSTRB 0178H pressed at the same time.
KEYAUX 017BH Specify the key input device {main keyboard or RS-232C}).
KEYSTATSET 017EH Specify the key repeat function and the key click function.
Read the settings of the key repeat and click functions and the current
KEYSTATREAD 0181H key input device.
OFFCHK 0184H Read the state of the OFF key.
KEYGETND 0187H Read the first character in the key buffer without changing the contents

of the key buffer.

BREAKRESET 018AH Clear the latch of the BREAK key.

10CS

KEYGET

Entry Address 0166H

Function Read one character from the key buffer (64 bytes). If the key buffer is empty, the
routine waits for a key input. When the auto power-off function is enabled, if no
key input occurs for about 10 minutes, the power is automatically turned off. In
this state, if the BREAK[ON] key is pressed, the routine is restarted.

Parameter none

Return CF = 0: Normal termination A = Key code
1: The routine has resulted in a timeout error. (That is, when this routine

was called, the key buffer was empty and no key input occurred wnthm

10 minutes. If this happens, the key wait abort bit (bit 4 of KEYWK2

(FO7AH)) is set to 1.)

Affected Register AF

KEYGETR

Entry Address 0169H

Function Same as the KEYGET routine except the routine does not wait for a key input
even if the key buffer is empty

Parameter none
Return CF = 1 if the key buffer is empty.

Affected Register AF

KBUFSET

Entry Address 016CH

Function Clear the key buffer, then load as many data as specified by A register, from the
memory locations whose starting address is specified by DE register into the key
buffer.

While the routine is being executed, the key scan interrupt is disabled.

1

I0CS

Parameter DE = Starting address of the memory locations where data are stored
A = Number of data to be loaded (1 =< A < 63; If A=0, then the key buffer is
cleared.)
Return none
Affected Register DE
Remarks Data to be loaded 1o the key buffer must be within only one bank.

BREAKCHK

Entry Address 016FH

Function Read the state of the BREAK key. If the BREAK key ‘has been pressed, the key
buffer is cleared.

Parameter none

Return CF = 1: The BREAK key has been pressed.
0: The BREAK key has not been pressed.

Affected Register AF

CURUDCHK

Entry Address 0172H

Function Check whether or not the [T] or [{] key has been pressed.
Parameter none
Return CF = 0: Neither [T] nor [1] key has been pressed.

1: The {T] and/or {{] key has been pressed.
A = Kind of the key(s) pressed
(If bit 7 is 1, the []] key has been pressed, and if bit 6 is 1, the [T] key has
been pressed.)

Affected Register AF

nn

[0CS

KEYDIRECT

Entry Address 0175H

Function Read the code of the key that has been pressed when the routine is called. While
the routine is being executed, the key scan interrupt is disabled. The key buffer is
also cleared.

Parameter none

Return A = Key code (A = 00H if no key has been pressed.)

Affected Register AF

KEYSTRB

Entry Address 0178H

Function Read the state of the keys corresponding to the specified key strobe. Those bits
corresponding to the keys pressed are read to be 0. While the routine is being
executed, the key scan interrupt is disabled.

Parameter A = Strobe number (00H to 08H}
Return A = State of the keys

Affected Register AF

' "'l I""“l r"'_\ r”"‘
s [[l (=]
L___: Loodbod i
swobe? [+ [« [][][][1[<1[+]
swnes (o] (] (5] o] (5] (5] el (5]
s [EHH
| st [HEHEHEEOED
» sy [(IO HEEEE
| son: [HHEEOHEE
st FHHEEHEE
s [JNEHRHEED

MSB LSB

Key state data

0 = The key has been pressed.
1 = The key has not been pressed.

22

10CS

KEYAUX

Entry Address
Function

Parameter

Return
Affected Register

Remarks

017BH
Specify the key input device (main keyboard or RS-232C).

A = 00H: Main keyboard
02H: RS-232C

CF = 1: Parameter specification error
AF

If RS-232C is selected as the key input device, KEYGET, KEYGETR and KEYDIRECT
routines are executed to RS-232C.

KEYSTATSET

Entry Address
Function

Parameter

Return
Affected Register

Remarks

017EH
Specify the key repeat function and the key click function.
A = Function

A:bit7 bit6 bits5 bit4 bit3 bit2 bit1 bit0

Don't care

All keys are allowed to be repeated = 1
Keys other than special keys are allowed to be repeated = 0]
Key repeat ON = 1
Only the cursor keys are allowed to be repeated = 0
Key clicking ON = 1]
Key clicking OFF = 0

none
none

The special keys described in “Parameter” are: CTRL, SHIFT, SML, =, function
keys, KBII, RCL, MODE, ON, and OFF.

l0CS

KEYSTATREAD

Entry Address

Function

Parameter

Return

Affected Register

Remarks

OFFCHK

0181H

Read the settings of the key repeat and click functions and the current key input
device.

none
A = Settings of the functions

A:bit7 bit6 bits bit4 bit3 bit2 bit1 bi:o
e P ——
Uncertain

Main keyboard = 0

RS-232C =1
All keys are allowed to be repeated = 1]
Keys other than special keys are aliowed to be repeated = 0
Key repeat ON = 1]
Only the cursor keys are allowed to be repeated = 0|
Key clicking ON = 1]
Key clicking OFF = 0

AF

The special keys described in “Return” are: CTRL, SHIFT, function keys, KBII, RCL,
MODE, SML, =, ON, and OFF. ‘

Entry Address
Function
Parameter

Return

0184H
Read the state of the OFF key.
none

CF = 0: The OFF key has not been pressed.
1: The OFF key has been pressed.

Affected Register AF

KEYGETND

Entry Address 0187H

Function Read one byte of key code from the beginning of the key buffer without changing

the contents of the key buffer.

2K

10CS

Parameter none

Return CF = 0: A key code was read. A = Key code
1: The key buffer was empty.

Affected Register none

BREAKRESET

Entry Address 018AH

Function Whether or not the BREAK key has been pressed can be known by checking the
state of bit 1 of the contents of the /O address 1BH: if bit 1 is “0”, the BREAK key
has not been pressed, and if bit 1 is “1”, the BREAK key has been pressed.

This routine resets the content of that bit.
The key buffer is cleared when the routine is called.

Parameter none
Return none

Affected Register AF

ne

I0CS

3.2.2 Work Area used for IOCS Routines for Key input

The following table shows the work area map for key input.

Address Contents

Key function flag
Bit 0: Disable the key scan interrupt.
Bit 1: Enable the key clicking.
Bit 2: Key repeat
Bit 3: Range of keys to be repeated
0: All keys other than the special keys
1: All keys including the special keys
Bit 4: Delay before starting the key repeat
0: Long
Fo79H 1: Short
Bit 5: Conditions for key repeat
0: If the same key code is generated consecutively, only one key code is accepted into
the key buffer.
1: Even the same key code is repeated.
Bit 6: Repeat pitch
0: Siow
1: Fast
Bit 7: Disable the key code conversion upon execution of the KEYGET routine.

Key function flag
FO7BH Bit 1: Disable the auto power-off function.
Bit 2: Disable the OFF key.

Key buffer write pointer
FO7FH This pointer specifies the position in the key buffer to which the next key data is to be written. If
the key buffer is full, MSB is set to “1”.

Key buffer read pointer
FO80H This pointer specifies the position in the key buffer from which the next key data is to be read. If
- the read pointer has the same value as the write pointer, this means there is no data to be read.

FO83H Key code last returned

F084H Bank number of the key code conversion table for SHIFT mode

Address of the key code conversion table for SHIFT mode

FO85H This specifies the starting address of the key code conversion table used in the SHIFT mode upon

~ FOB6H | o ecution of the KEYGET routine.
FO87H Bank number of the key code conversion table for KBI mode
FO88H Address of the key code conversion table for KBI mode
~ FO89H This specifies the starting address of the key code conversion table used in the [S] mode upon

execution of the KEYGET routine.

FO8AH Bank number of the key code conversion table for SHIFT-KBI mode

Address of the key code conversion table for SHIFT-KBI mode

jggggH This specifies the starting address of the key code conversion table used in the SHIFT{S] mode
upon execution of the KEYGET routine.
FODFH .
~ F11EH | Key buffer

F11FH Bank number of the key code table

Address of the key code table
This specifies the starting address of the key matrix to key code conversion tabie used in the key
scan routine,

F120H
~ F121H

37

10CS

3.2.3 Scanning of ON (BREAK) Key

Whether or not the BREAK key has been pressed can be known by checking the state of bit 1 of the
contents of the IO address 1BH: if bit 1 is “0”, the BREAK key has not been pressed, and if bit 1 is “1”,
the BREAK key has been pressed. This state of bit 1 is latched. To reset it, execute BREAKRESET
routine (entry address 018AH). The key buffer is cleared when the routine is executed.

3.2.4 Entry of International Characters and Symbols

When the KBI and/or SHIFT symbol is on, execution of KEYGET or KEYGETR key input 10CS routine
allows to enter the international characters and symbols.

3.2.5 Data Flow from Key Scanning to KEYGET Routine
(1) 1/64-sec interrupt handling routine

C Key matrix)

]

l Key code conversion table —I

v

Key code

¥

C Key buffer)

(2) KEYGET routine

Key buffer

Reference of status line symbols

Normal SHIFT KBu SHIFT-KBI
4
Conversion with Conversion with Conversion with
SHIFT code table KBI code table SHIFT-KBI code table
Y 4
y
Key data

Key data are made as described above. The key code table and the other tables are assigned by
specifying the starting address of each table in RAM with a pointer. Therefore, the user can make his
own key layout by changing the contents of these pointers so as to point the user-defined tables. (See
also section 3.2.6.)

3R

10CS

3.2.6 Re-definition of Keys

(1) Key tables
The PC-1600 has four kinds of standard key tables in ROM. Since the PC-1600 uses these tables by
specifying the starting address of each table with a pointer, the user can use his own tables by
changing the contents of these pointers.

| Pointer
Table Function Size
Name Address (in bytes) Contents
Starting address of the key
KEYCDA F120H 2 code table (in the order of
Convert key matrix to the low and the high bytes})
Key code table key code. Y g
Bank number of the key
KEYCDB F11FH 1 code tablg
Starting address of the
‘ SFTCDA FO84H 2 SHIFT chdhe tlable (n&tl;]e
Convert key code to ﬁ{dﬁrbo !)e owane 1he
SHIFT code table SHIFT code. igh bytes
Bank number of the SHIFT
SFTCDB FO86H 1 sode tabls
Starting address of the KBII
KNCD1A | FO087H 2 code table (in the order of
Convert key code to the low and the high bytes)
KBI code table KBII code.
KNCD1B FOS9H 1 Bank number of the KBII
code table
Starting address of the
SHIFT-KBII code table (in
Convert key code to KNED2A | FOBAH 2 the o_rder of the low and
SHIFT-KBI code table | o/iet pr'code. the high bytes)
Bank number of the SHIFT-
KNCD2B | FO89H | 1 ! KT coda e

(2) Structure of key table
The structure of each table is shown in the following source program list. To make a user-defined
table, use the same structure as that of these standard tables provided in ROM.
The label names used in the source program list are related to the tables as follows:

Table Label name
Key code table KYCDTB
SHIFT code table SFTCDT
KBI code table KNCDT1
SHIFT-KBI code table KNCDT2

Each table must be made within one bank.

20

l0CS

KYCDTR.

H =~ FRB7 -
LEFR BEH M wlx]

5 e PRE e
LEFR #3H sotel
DEFB £33 4+ § AndrF
DEFR HEH s RS

. P — F' Q;’ S
LDEFR 33H 33
DEFR J6H &
DEFR 39H)
UEFR 47H g8
DEFR 14H SFE4
DEFR S4H 57
DEFR 437H s B
LEFR Gk ocurosr down

3 ——— PhES -
DEFR CH joursor e ight
LEFE iFH f mode
DEFR 18H 1cl
DEFR 41H 3A
REFR 1 EH 5 def
DEFE S1H L
DEFR SAaH $ 7
LDEFR BeH ismall key

H ——— FAS -~
DEFB 30H HE=
DEFR HEH scursor left
DEFR SH 5P
DEFR 46H iF
LEFR 13K 1F3
DEFR FeH sR
DEFR . S5&H 5V
LEFR gt S Jspace

; i Ft Q 4 v o
DEFR =RH 3+
OEFR ZRAH 3 ®
DEFH 2FEH 3/
DEFE 44H D
DEFR 12H 3FE
TEFR 434 5E
LEFR 4 3H HE
OEFE 19H sl

H e-— PAJ
DIEFR ey 8 H
NEFR 4>+ 5L
DEFR 4FH 30
NEFR 4RH 3K
LEFER 1&6H ;F&
OEFR 494 31
LEFR =8H EAR ¢
DEFRB A1 B renter

z —— AR ——
[IEFR Z1H 51
DEFR 34H 4
DEFR I7H 37
DEFB 4-H 53
DEFR 15H SFS
DEFR H5H U
DEFR 4114 iM
REFE ZiH L)

H e AL e
DEFRB =EH 3=
TEFH T .
DEFH BEH F
LDEFH i o
DEFR 11H 1
DEFR 57H
LDEFE 58H
DEFB #HIH otary key

3 e FRE -

DEFR JEH
DEFR 3G5H
DEFR 38H
DEFR 48H
DEFR FiH
LEFR S7H
DEFR 4EH
DEFRE HIEH

r

NZ<N IO |3 XETN0 |
=
“a
(3

[T RETICT VR RNT VT RYE R ! EFERY QYT RNTRVE VS RV

Lrosor up

I0CS

SFTCOT: ’éﬁhift key code
: ' —— @8H -
DEFE 1DH scursol left
OEFR &TH srotary
DEFE @AM jcurosar down
DEFR oEH socursor up
DEFR 1CH scursor right
DEFEH @ senter
LEFR HEH 5 ON
DEFER HFH 15 3 OFFF
; — 1 —-
DEFR @ tno key
DEFE 21H sF1
DEFR 23H sF2E
LEFR £3H sF3
LEFR 24+ sF4
LEFRB 25H 3FS
DEFR 26H sF&
DEFE] ino key
LEFE 16H ;CL
LEFE 19H s RCL.
LEFR i1 ino key
DEFHE 1BH s DEF
DEFB f] ino key
DEFE 4] ino key
DEFR §2 sno Key
DEFR 1FH - § MOLIE
DEFR S5EH ispace
DEFR] sno key
LDEFR i 3o key
DEFE 1] inn key
DEFR] sno key
DEFR &) ino key
DEFEB @ sno key
DEFR] sna key
DEFE 3CH 5 ¢
DEFR JSEH 3)
LNEFE 3AH 3k
DEFR 3EH $+
LEFE {7 sno key
DEFR ZCH)
DEFB SFH H
DEFR JFH 5/
7 e RG] -
DEFR 70CH 31
DEFR 27H 51
DEFE SBH P
DEFB SDH 53
DEFE &IBH 34
DEFR 7BH 35
DEFB 7k 1 4
DEFR SCH 57
DEFB 7EH 58
DEFR 37H 59
LEFR 5] ino key
LEFER (%] mo Kk ey
LEFR] ino key
DEFB 4.43H § =
DEFB i ino key
DEFE] sno key
3 ——— 4 ———
DEFR i iNno key
LEFE 4H1H A
DEFE =H B
LEFE &3H 31 C
DEFE &4H LRy
DEFR &SH 3E
DEFR 6H6H sF
DEFR &7 HE]
DEFER 68H iH
DEFB 6FH 51
DEFEB 6AH $J
LEFR HEH 3K
DEFE 6CH 3L
DEFR &LH R
DEFEHE &EH IN
DEFRB &FH 30

10CS

~n

LEFB
DEFB
DEFE
DEFE
DEFE
LEFEB
DEFB
DEFR
DEFE
DEFR
DEFB

KNCDT1:
DEFB
DEFR
LEFRE
DEFR
LEFR
LEFR
DEFEB
DEFR

DEFH
LDEFR
DEFRB
DEFR
LEFR

~u

EFE

[EFR
DEFR
LEFE
LEFR
LDEFE
EFR
LEFE
LDEFR
LEFE
DEFE
DEFE
LEFE
DEFB
DEFR
DEFE
DEFR

DEFR
LDEFR
LEFR
DEFE
LEFR
DEFR
DEFRB
DEFR
DEFR
DEFR
DEFE
DEFR
DEFB
DEFER
DEFE
DEFE

~n

“

SEH =

JKBZ key code table

7@ iR
71H L]
7ZH IR
734 38
74H 3T
7SH 5U
76H 5V
77H W
78H iX
79H iY
7AaH LA
—— @38H -
HeH jcursol left
H9H srotary
B curosor
#EH s Ccursor
#HEH scursor right
#oH jenter
WEH 2 O
@FH 3 OFF
- 1GH -
1} ;o key
11H sF1
12H 5F2
13H 5F3
14H sF4
15H SFS
16H iF6
& ino key
igH s CL
HREH s RCL
a irnn key
1 EH ;s DEF
5] sno key
19} sno key
@ sino key
1FH 3 MODE
—e ZHH ——
=H sspace
@ ino key
i 3no key
i sino key
o ino key
@ sno key
1% ino key
i3 sno key
HIEH 3¢
B H 3)
26H 3ok
%BH 3+
: ino ke
=21 3 — Y
FEH 5.
ZFH 5/
e R -
3 ;4
31H 31
32H ;2
33H 53
34K 54
3T+ 35
3&H ;6
37H 57
38H 38
3%H 39
7 sno ke
40 sno key
@ sno key
30H ;=
f sna key
i no key

10CS

H e AU
DEFE 5 (no Key
DEFE BABH 5A
LEFE WITH]
DEFE BB0H s
DEFR BALH i
LEFE GgeH 3E @
DEFE PeEH I F
DEFE BEIH ERE]
DEFH HAIH 3 H
LEFE HFH 31
DEFE HAsH 3J
DEFE GAaLH 5K
DEFER Ba7TH 3L
DEFE HIBH M
DEFE HoCH IN
DEFH BASH 30
H ——- GfEH -
DEFER iBEH 3 F
DEFR #EEH IR
DEFE wITH R
DEFHE BFEH 8 s
DEFB #9AH 3T
DEFB Ly AW
DEFR @IEH 5V
DEFE HeFH W
DEFE B8AH 3 X
DEFE HPEH Y
. DEFEB HHSH 5 Z
B 5 B e e S S S S
KNCOTZ2: ;shift KBZ2 key code table
H —— @8t —-
LIEFR 11H scursonl left
DEFR #HIH strotary
LDEFR BAH S Curosor down
LDEFER FHRH FCUrsor up
DEFR 1CH jcursor right
DEFR &0H jenter
DEFR HEH 3 ON
DEFB HEH 5 OFF
H - 1EH -
DEFRB 0] tno key
LEFB 21H 5F1
DEFE 22 3FE
DEFE 23H sF3
DEFE 24H sF4
DEFE 25 5FS
DEFR 26H SFA
DEFE i ino key
DEFRB 16H ;1 CL
LDEFE 19H s RCL
DEFR @ ino key
DEFRB 1EH s DEF
DEFR 3] ino Key
LDEFRB i sno key
DEFR i ing key
LEFER 1FH ;s MODE

10CS

un

LEFR SEH Ispace
LDEFR %) ino key
LEFER @ sno key
LEFE i ino ey
DEFE 1] ino key
DEFB %) ino keay
DEFE a8 sno key
DEFB 1%} ino key
LEFR WAEH 3 (
DEFB FOFH)
DEFR 3AH HES
DEFE ey 5+
DEFB 5] ing key
LEFB =CH ;-
LEFR SFH .
DEFR 3FH 1/
H - 3 ——
DEFE 7EH 4]
DEFE 27H -
DEFR 1Bk L
DEFER SO 13
DEFR HEH 34
DEFE 7R L
LEFRB 7O b
DEFR S5CH 37
DEFR 7EH 38
DEFER 39H 1@
DEFR 7] inn key
DEFR i sno key
DEFE i sno Key
DEFB 4484 ;=
DEFE @ ino kay
DEFE 5] ino Key
5 e A e
DEFB & fno key
LDEFE wAEH A
DEFB B3746H iR
DEFR #HECH iC
DEFE @BA1H sh
DEFHR @BERH SE
DEFR #HAZH 3
DEFEB Bo3H 313
DEFR gaBH iH
DEFR BO6H I
DEFE BAGCH 53
LDEFB #aFH K
LEFR BHAAH 5L
DEFR HFEH M
DEFB BP0H §N
DEFR BE4H 50
3 s SR e
DEFB #87H (R
DEFR HE4H Xn)
DEFE HF4H iR
DEFE nge 15
DEFR @o1H 3T
DEFB #@I1H U
DEFB W9 3IH 5V
DEFE HRIH W
DEFER 288H 3 X
DEFHR @w8H 3y
. LEFE #E3H A
?

t0CS

3.3 FILES

3.3.1 Files Handled in BASIC

{1} Type of Files
The PC-1600 BASIC can handle the following three types files.
1. ASCIi file
2. BASIC program file saved in the intermediate code format

3. Machine language program file)
A file other than an ASCI! file has the 16-byte header at the beginning of the file. The header is
structured as shown in the following figure, but the details are different depending on the type of

'S

file.
: i = FFH: File other than ASCI! file

+00H FFH Header exist/not exist ~ Other than FFH: ASCH fite
+01H 104 D code {No header is provided.)
+02H 00H .

= -~ Reserved
+03H 00H
+ : Mod 10H: Machine language program

ok ade 21H: BASIC program saved in the

+05H fow intermediate code format
+06H middle } Size
+07H high
+08H low
+09H high Load add

| ‘9 — oad aqdress ® “Size" is the size of the data area.
+0A Bank
+0B fow
+0C | high _| | Execution address ° l"Load address” and “Execution address” are effective only for a machine
P Bnk anguage program file.
+0EH 00H

— — | Reserved
+0FH OFH

Data

|0CS

{(2) File management in BASIC
In BASIC, files are managed by the 57-byte file control block (FCB) and the subsequent 256-byte

file buffer. This 313 (=57+256) byte area is prepared as many as specified by MAXFILES
command of BASIC.

+00H FLNO File number +1FH FTiM Time
+01H | FDVNO Device name
1 +21H | FDAT Date
2
3 +23H FetUs First cluster number
+05H FLMD Mode .
+06H | FBP File buffer pointer +25H { FSIZE File size Low byte
+07H FBRP File buffer read pointer
+08H | FSTATUS | Status
+09H | FNAM File name) High byte
+294 | FFRE Work area used by
each device (16 bytes)
+11H FEXT Extension +30H Current record
+31H Current block
+14H FATT Attribute
+15H Reserved
+38H File buffer
{256 bytes)

1) File number
File number specified in an OPEN statement
2) Device name
Name of the device opened. If the device name is less than four characters long, the space is
filled with zero. When file {OCS routines (described in section 3.3.2) are called, a device name
needs to be set here.
3) Mode
File mode specified when the file is opened (input mode, output mode, append mode)
4) File buffer pointer
Length (bytes) of the effective data in the file buffer
5) File buffer read pointer
Address of the location in the file buffer from which data are read next when the file is opened.
in the input mode (The address is specified by the offset from the beginning of the file buffer)
6) Status
While the file is opened in the input mode, if EOF is detected upon reading data from the file
buffer, this byte is set to “1".
7) File name
File name of the file opened
8) Extension
Extension of the file opened. If no extension is given, this area is filled with space.

9)

10)

11)

12)

13)

14)

15)

10CS

Attribute
Attribute of the file
Time
Time when the file is created
APUPRUSE ... N WP .. B
e e e e e]
Hour Minute Second/2
Date
Date when the file is created
22H) 21H
RN
Year Month Day

Note: The year is expressed as the offset from 1980.

First cluster number

Cluster number of the first one among the clusters allocated for the file
File size

Size (in bytes) of the file

Current record, Current block (128 records/block)

Specifies the record to be accessed next.

The current record is set to 00H when OPEN or CREATE routine is called. Then, the current
record is incremented by one each time SEQUENTIAL RD or SEQUENTIAL WR routine is
called. (Current record: 00H to 7FH)

File buffer

File buffer used for BASIC

47

t{0CS

3.3.2 10CS Routines for Files
The following I0CS routines read, write or search for files. Call these routines as follows:
(1) set appropriate parameters in FCB and registers,
(2) set the I0CS number of the desired routine in C register, and
(3) call 01DEH.
When control returns from the called routine, the contents of all registers are destroyed, except that
the following information is stored in A register.
A = 00H : Normal termination
= Error code : When a error {errors) has occurred
The individual bits of the the error code giveri in A register designate the following
errors.
Bit 7. The specified device does not exist.
Bit 8: The specified device could not accessed properly.
Bit 5: No media is set in the specified device.
Bit 4: This IOCS routine is not supported by /0.
Bit 3: Other
Bit 2: There is no data left to be read.
Bit 1: The media does not have free space for writing.
Bit 0: The file could not found or the directory area has no free space.

Routine name Function I0CS NO.
OPEN FILE Open a file. OFH
CLOSE FILE Close a file. 10H
SEARCH FIRST Search for the first file. 11H
SEARCH NEXT Search for the next file. 12H
DELETE FILE Delete a file. 13H
SEQUENTIAL RD Read data sequentially from a file. 14H
SEQUENTlAL WR Write data sequentially to s file. 15H
CREATE FILE Create a file. 16H
RENAME FILE Rename a file. 17H |
SET DMA Set a transfer address. 1AH
GET ALLOC Get the file device information such as the number of empty clusters. 1BH
SET ATTRB Set file attributes. 1EH

48

OPEN FILE

€
]
(V3]

10CS Number
Function

Parameter

CLOSE FILE

OFH
Open the file specified by the drive name, file name and extension given in FCB.*

DE = Starting address of FCB of the file to be opened

IOCS Number

Function

Parameter-

10H
Ciose the file specified by the drive name, file name and extension given in FCB,

DE = Starting address of FCB of the file to be closed

SEARCH FIRST

IOCS Number

Function

Parameter

Remarks

11H

Search for the directory of the file having the file name given in FCB, and transfer
the contents of the directory to the memory locations specified by the disk
transfer address (specified by SETDMA routine).

DE = Starting address of FCB

If the device name is COM or CAS, the routine results in an error. For
specification of a file name, the wildcards “?” and “*" can be used.

SEARCH NEXT

10CS Number

Function

12H

Search for the directory for the next file of among the files other than the one that
was found by the previous SEARCH FIRST routine, and do the same thing as
SEARCH FIRST routine.

49

10CS

DELETE FILE

{OCS Number 13H

Function Delete the file specified by FCB from the directory, and release the data area and
directory entry used for that file.

Paramete DE = Starting address of FCB

Remarks If the device name is COM or CAS, the routine results in an error. For
specification of a file name, the wildcards “?” and “*” can be used.

SEQUENTIAL RD

10CS Number 14H
Function Read one record (256 bytes) of data from the opened file into the memory
locations specified by the disk transfer address (specified by SETDMA routine).

The subsequent records are transferred record by record each time the routine is
called.

Parameter DE = Starting address of FCB

SEQUENTIAL WR

IOCS Number 15H

Function Write one record (256 bytes) of data from the memory locations specified by the
disk transfer address (specified by SETDMA routine) into the opened file. The
subsequent data in the memory are written record by record into the file each
time the routine is called.

Paramete DE = Starting address of FCB

RN

10CS

CREATE FILE

10CS Number

Function

Parameter

Remarks

16H

Create a file specified by the device name, file name and extension given in FCB.
If a file with the same name already exists, the existing file is deleted, then the
new file is created.

DE = Starting address of FCB
When the routine is terminated normally, the current time and date are written in

the time and the date areas of FCB, and “00H" is written in the file buffer pointer,
first cluster number, file size, current record, and current block.

RENAME FILE

10CS Number

~ Function

Parameter

" Remarks

17H

Change the file name (and the extension) of the file specified by the contents of
+09H to +13H in FCB (addresses: DE+09H to DE+13H) to the new file name (and
the extension) given in +29H to +33H (addresses: DE+29H to DE+33H]).

DE = Starting address of FCB

if the device name is COM or CAS or if the new file name (and the extension) is
the same as that of an existing file, the routine results in an error.

10CS Number
Function

Parameter

TAH

Set a disk transfer address.

DE = Disk transfer address

51

10CS

GET ALLOC

I0CS Number 1BH

Function Get the file device information of the device specified by FCB specified by DE
'b register, as follows:

E = Number of sectors per cluster

BC = Sector size

HL = Number of empty clusters

Parameter DE = Starting address of FCB

Remarks If the device name is COM or CAS, the routine results in an error.

SET ATTRB

10CS Number 1EH

Function Set attributes to the file specified by FCB specified by DE register. The attributes
to be set must be prepared in the +14H location of FCB (address: DE+14H).

Parameter DE = Starting address of FCB

R92

10CS

3.3.3 Structure of Memory File
(1) Physical structure
A memory file consists of 16KB segments. The following memory modules can be used as a
memory file.
CE-161 : 16 KB
CE-1600M, CE-1620M: 32 KB
(CE-1620M is a 32KB EPROM module and can be used in the same way as CE-1600M except that
CE-1620M is a ROM moduie.)
These memory modules for memory file are allocated in slots 1 and 2 as follows.

Bank 0 Bank 1 Bank 2 Bank 3
8000H
| L1
BFFFH kS VA
e ZStot1 A Slot 2
b
16KB memory module 32KB memory module \ T

These can be used for future
extension by switching them
by /O port 28H,

Q 5 SecCw

iz Sedvea~ 2

b, B
do 8 oo cux (828),8 GV Laiaiias

A 3

53

10CS

Each module is divided into 4K-byte units called tracks, and each track is divided into 512-byte

units called sectors.
The following shows the track/sector structure of each memory module.

(1) CE-161 {2) CE-1600M/CE-1620M
Bank 0 Bank 1
Bank 2 Bank 3
8000H | Sector 0 8000H | Sector0 :
Track 1 Track 1 Track 5
Sector 7
Sector 8
Track 2 Track 2 Track 6
Sector 15
Track 3 Track 3 Track 7
Track 4 Track 4 Track 8
BFFFH | Sector 31 BFFFH Sector 63

A memory file is managed using the concept of the track and sector, so that it can be handled in
the same logical method as the 2.5-inch floppy disk. As described in the figure above, all sectors
are managed with the serial number called the logical sector number. ‘

(2) Logical structure
The logical sectors are classified into the following four areas and allocated as described in the

figure below.

Boot sector Boot sector
) File allocation table (FAT) FAT
Logical sectors . -
Directory Directory
Data Data

(a) Boot sector
If a boot program loader written in a certain format is written in the boot sector, the contents
of this sector are executed either after being loaded in the program memory or directly
without the loading when the PC-1600 is powered on.
The following shows the format of the boot sector.

54

10CS

Contents
00H 55H (File module header ID code)
01H 80H
02H Check sum 5
03H Specifies whether or not to boot. If the content is either C3H or 1BH, the program is booted.
04H (Low byte)
Jump address
05H {(High byte)
06H 00H
08H Media ID (See the table below.}
09H Sector size (Bytes/sector) {Low byte)
0AH (See the table below.} {High byte)
0BH {sector size / 32) - 1 {See the table below.)
0CH DIRSFT (See the table below.)
0DH (number of sectors per cluster) - 1 (See the table below.)
OEH CLSSFT (See the table below.)
OFH First logical sector number {Low byte)
10H of FAT area (See the tabie below.) (High byte)
1MH FATCNT {See the table below.)
12H MAXDIR (See the table below.)
13H First logical sector number {Low byte)
14H of data area (See the table below.) (High byte)
15H MAXCLS (Low byte)
16H (See the table below.) (High byte)
17H FATSIZ (See the table below.)
18H First logical sector number (Low byte)
19H of directory area (See the table below.) (High byte)
1AH Number of sectors per track (See the table below.)
1BH 00H
1CH O0H
1DH Starting address for loading (Low byte)
1EH the boot program (High byte)
1FH 00H = The boot program is loaded in memory and executed.
FFH = The boot program is directly executed without being loaded.
~22EH Boot loader

[l =4

I0GS

1
il } sk ’ Memory Sector | Sector Number of First logical First logical First fogical | Number of
rom | ram | rom | Ram odule size] Media ID sire | sizeni21 DIRSFT | sectors per [CLSSFT| sector No. of |FATCNTIMAXDIR] sector No. of | MAXCLS | FATSIZ | sectorNo.of | sectors
(KB} cluster - 1 FAT area data area directory area | per track
'module (madule {module (module |
O (o] @] O]16(KB) | FOH . 20H 0004H 1&)1 DH —
O @] o (@] 32 F1H 46 0005H 003CH
O C 64 F2H 00H 01H 0006H 0078BH
O O 96 F3H 60H 0007H 00B8H
O @] 128 F4H 80H 000BH QOF6H
@] @] 160 F5H -y . 009BH
O @] 192 FeH 00BBH
01H 0zH = ” e
O o] 224 F7H OH 0012] 0O
0200H| OFH | 04H 0001 01H 08H
O < 256 F8H 5 FEH 0014H 00F7H .
O 320 FoH 009DH
DOH 0010H
O 384 FAH 03H | 03H 00BDH
(@] 512 FBH FEH 0014H OOFCH
O 640 FCH 00SFH
DOH 0010H
O 768 FDH .. |00BFH
07H 04H o
O 836 FEH Q0DEH
i FEH 0018H
o 1024 | FFH | 00FEH
(b) FAT

In the file management, the data area is managed by being segmented into units called
clusters. Each cluster of the entire data area is managed by one byte of management data, and
the set of these data is called FAT (File Allocation Table). The data area is managed in up to
254 clusters.
In the first byte of the FAT area is written the code that identifies the format of the memory
file. This code has a value corresponding to the capacity of the module as described in the
table above.)
in the second and the following bytes of the FAT area are written one byte of cluster
information regarding each cluster (from cluster 1 to cluster 254). The cluster information is
expressed as follows.
00H : This means that the cluster is not used.
01H to FEH : This means that the cluster is used and the value designates the cluster No.
of the next cluster that should come after the current cluster.

FFH : This means that it is the last cluster of the file.

{c) Directory
See section 3.8.3 Floppy Disk Specifications, item {4).

l0CS

(3) Logical format of module
The format is determined according to the capacity of each module as follows.

CE-161 CE-1600M, 1620M
No. of tracks 4 8
Sectors/track 8 8
Bytes/sector 512 512
Sectors/1 FAT 1 1
No. of FATs 1 1
Sectors/cluster 1 1
No. of files for the data Br:izrgast))f 28 48
clusters only

Logical sector 0 | Boot sector 0 | Boot sector
1 FAT 1 | FAT &
2 Directory 2 Directory
3 | Directory 3 Directory
4 Data 4 Directory
5 | Data
31
63

R7

10CS

3.4 INTERRUPT HANDLING
3.4.1 Interrupt Handling

(1) Interrupt cause
The PC-1600 processes many kinds of operations by using the interrupt handling function of
SC-7852 (Z80). Z80 accepts the following interrupt causes.
(a) The communication port has received data.
(b) Interrupt request from a PC-1600 peripheral device.
{c) Interrupt request from a PC-1500 peripheral device.
(d) 1/64-sec timer interrupt
{(e) Interrupt request from the sub-CPU.
The interrupt for these interrupt causes may be enabled or disabled individually by changing the
settings of the individual bits of I/O port of 35H: when the bit is set to 1, the corresponding
interrupt is enabled; when set to 0, it is disabled.

VO port 35H b7 | b6 | bS | b4 | B3 | b2 | b1 b0

ms8 | LSB
The communication port has received data.

Interrupt from a PC-1600 peripheral device.

interrupt from a PC-1500 peripheral device.

interrupt from LH5801

1/64-sec timer signal

Interrupt by key input

Interrupt from the sub-CPU.

Must always be 0.

* The /O port 35H can be both read and written.

The interrupt request state can be known by reading the contents of the I/O port 32H. The
meaning of the individual bits of 32H port is the same as that of 35H port. If the bit is 1, this means
that the interrupt request has been issued. If the bit is 0, this means that the interrupt request has
not been issued.

RQo

(2)

(3)

(4)

10CS

Interrupt handling
The interrupt requests are handied as follows.
(a) The communication port has received data.
Store the received data into the buffer, and send XON or XOFF signal if necessary.
{b} Interrupt request from a PC-1600 peripheral device.
Perform paper feed to CE-1600P, etc.
{c} Interrupt request from a PC-1500 peripheral device.
Perform paper feed to CE-150, etc.
{d) 1/64-sec timer interrupt
e Scan the keys.
e Blink the cursor.
(e) Interrupt request from the sub-CPU.
e (.5-sec timer
Low battery check; Analog input interrupt check; Cl signal interrupt check; Auto power-off
processing; RS-232C time-out '
e Wakeup timer
® Alarm1 timer
@ Alarm2 timer

Interrupt mode

The PC-1600 handies interruption by using the mode-2 interrupt of Z80. The interrupt vector
pointing the interrupt routine entry point is stored in the iocation of the PC-1600 system reset
routine entry address minus 2, in the order of the low and the high bytes. The location of this
vector is specified by | register (high byte) and 39H port (low byte). The location of the vector can
be known from the entry point address of the system reset routine which is stored in 0003H and
0004H in the order of the low and the high bytes. L

Interrupts available to the user

(a) 1/64-sec timer

{b} 0.5-sec timer

{c) Alarm1 timer

(d) Alarm2 timer

{e) Wakeup timer

For these interrupts, the PC-1600 has a function to provide an interrupt service to a user-defined
interrupt handling routine. There is a work area to store the entry bank number and address of a
user routine which receives the interrupt service for a particular interrupt. By setting a bank
number and an address in this work area, the user can define a routine call from the interrupt
routine to the desired user routine.

The work area has the following structure.

o]

10CS

® Work that specifies the bank number

MSB LSB Address
Address [b? |b6 }bsLm ‘ b3 [bz]b1 50

1/64-SECHMET ..ocvvviiiiinerinriniaininns FOBCH
Bank No. 0.5-S8C tIMET «.ovvvemsereernnesrererraasisees FOBFH
Only when these two bits are setto 1, ALZITAT BT ooooeeeesoos s EQC2H
the interrupt service is enabled, e
Alarm2 timMercovvinveninen. FOCS5H
Wakeup timercevieensnsssarnninne FOC8H
e Work that specifies the address
Address Low byte Address
Address+1 High byte
1/64-s€C tIMET .nvinvriensininiinire FOBDH
Entry address
0.5-S€C tIMEr it FOCOH
Alarmt tIMer ceeevnrneeerieccenens FOC3H
Alarm2 Himercussmuaiisgas FoCceH
Wakeup Himerooeieioinion. FOCSH

Besides the setting of the bank number and the address, for the 1/64-sec timer and the 0.5-sec
timer, the most significant bit of the following work must be set to 1.

1/64-sec timer: FOB7H

0.5-sec timer: FOBBH

10CS

3.4.2 Work Area used for Interrupt handling

The PC-1600 uses the following work area for the interrupt handling, in addition to the work area
described in section 3.4.1 interrupt Handling, item (4) Interrupts available to the user.

Address Contents
Work for interrupt handling regarding display
Bit 0: Cursor blinking state. If bit 0 is 1, this means the cursor is in the ON state during the
FOBEH blinking.
Bit 1: A flag to disable the access to the LCD driver during the interrupt handling routine. If this
flag is 1, no display is allowed in the interrupt handling routine.
FO68H Cursor blinking counter
F069H L M h' h h d 43 H
~ FO78H ocations to which the dot pattern at the cursor position is saved
Work for interrupt handling regarding key input
Bit 0: Key bounce flag
This fiag is set to 1 during the key bounce processing
Bit 2: KEYGET IOCS routine execution flag
FO7AH This flag is set to 1 during execution of KEYGET routine. This¥is used for the auto
. power-off processing.
Bit 3:" A flag to disable the access to the key port during the interrupt handling routine.
If this flag is 1, no access to the key port is allowed in the interrupt handling routine.
Bit 4: A flag to request a compulsive return from KEYGET IOCS routine. If this flag is set to 1,
control is forced to return from KEYGET routine.

A1

10CS

3.5 SYSTEM START-UP

3.5.1 Processing at Power On
The following diagram outlines the processing when the PC-1600 is powered on.

Z80 RESET (Start from 0000H)

l Are the conditions for turning the power on
10Ccs by the auto power-off function satisfied?

When the power is . ? <t
turned on by thg atte Reset handling routine = s Biowsd
power-off function 1: Not allowed

iocs A register holds

KEYGET the power ON conditions.

IOCST

BASIC A
Routine to check whether or not
the the power is allowed to be
npe . . turned on by the auto power-off
A" register: function

Power ON conditions
The interrupt
request is masked.

4

Initialization
ON key ON from Wakeup {Clis ALL RESET | RESET Reset from
the external {event turned on |event event the external

B, N [p, ool Ip P R I B ol s e ol
{Pr

('__T_A r‘_::_"j IITII' gf{l('*l +|
V\L___.p

Interrupt T Auto program run?

[

request
is masked

request
is enabled

Interrupt l Command level Program run state

3.5.2

10CS

Execution of Boot Program

The PC-1600 can start a program other than the BASIC interpreter (a boot program) at power-on time.
The PC-1600 searches for a boot program in the following order:

(1)
(2)
(3)

a boot program stored in a file device
a program stored in the system software module
a program pointed by the application entry pointer

If a boot program exists in a file device such as a memory file or a 2.5-inch floppy disk, the PC-1600
loads it into memory and execute it. (A boot program must be written in the format particular to that
file device.)

If a boot program does not exist in any file devices, then the PC-1800 searches for the system
software module. If the system software module exists, the PC-1600 jumps to the entry address of the
program written in that module.

If the system software module does not exist, then the PC-1600 jumps to the memory location
specified by the application entry pointer. The PC-1600 BASIC interpreter is started in this method.

{1) Execution of boot program

(a)

(b)

(c)

Execution of the boot program in a file device 3
A device that can handle files has a function to execute a boot program. The format of the
boot program differs depending on the device in which the boot program is stored. See the
explanation of a particular device. When the PC-1600 is powered on, the PC-1600 checks
whether or not there is a boot program in the file devices. If there is a file device that has a
boot program, the PC-1600 makes the device boot the program: the PC-1600 loads the boot
program into memory and jumps to the start address (written in that program).
Execution of the program in the system software module
If the system software module is installed in a slot, the PC-1600 jumps to the entry address
written in the header of that module. See section 3.13.3 Structure of Memory Module for the
structure of the hieader.
Execution of the program specified by the application entry pointer
At the end of the system start-up processing, the PC-1600 jumps from the I0CS to the entry
address {and bank) of the application software. This action is performed if a boot program
does not exist in the system software module or in the file devices. The PC-1600 BASIC
interpreter is started in this method: the entry address and bank of the BASIC interpreter are
set in the particular work area when the PC-1600 is reset or all-reset.
B When control enters this entry point, the system has the following state:
1) The contents of the registers and flags other than the A, | and SP registers and the IRQ
mask flag are uncertain.
2) The SP register is in the reset state.
3) The | register and the interrupt mode (mode 2) are in the set state, and the IRQ mask flag
of Z-80 is in the DI (0) state.
4) One of the eight bits of the A register is set to 1, which indicates how the system was
started up.
Bit 0: System started up by an ALL RESET event.
Bit 1: System started up by a RESET event.
Bit 2: System started up by a RESET event from the external bus.
Bit 3: Be always 0.
Bit 4: System started up by a power-on event by the ON key.
Bit 5: System started up by a power-on event from the external bus.
Bit 6: System started up by a power-on event by the wakeup function.
Bit 7: System started up by a power-on event by the Cl signal entry of SIO.

R

10GS

5) The VO ports are in the reset state.
6) The LCD display is cleared, but the status line symbofs are preserved.

B Application entry pointer
e FODCH: Bank number where the application entry point exists (0 to 7)

e FODDH : Address of the application entry point (in the order of the low and the high
~ FODEH bytes)

B The I0CS checks, for the application software such as the BASIC interpreter, whether it is
allowed or not to turn on the power from the auto power-off state. Because of this, the
application software must have a subroutine to check this and return the result in the carry
flag (CF).

CF = 0: It is allowed to turn on the power from the auto power-off state.
CF = 1: Itis not allowed to turn on the power from the auto power-off state.
Based on the result of this subroutine, the I0CS determines whether or not to turn on the
power from the auto power-off state.
In the initialization routine provided in the application software, the éntry address and bank
of that subroutine must be set in the auto power-off ON check routine pointer.
@ Auto power-off ON check routine pointer
FOCBH: Bank number where the auto power-off ON check routme entry point exists (0
to 7)
FOCCH : Address of the entry point {in the order of the low and the high bytes)
~ FOCDH

I0CS

3.6 RS-232C AND SIO
3.6.1 Handling RS-232C and SIO in

(1) General
The PC-1600 has two communications connectors (for RS-232C and for SIO) while it has only one |

serial/parallel conversion LSI. Because of this, RS-232C and SIO cannot be used at the same time.
They can be switched by SETDEV command of BASIC:
SETDEV “COM1:" RS-232C is selected.

SETDEV “COM2:" S10 is selected.
Selection of RS-232C or SIO can also be done in OPEN, SAVE, LOAD, BSAVE, or BLOAD

_command, by explicitly specifying “COM1:" or “COM2:” in the statement of these commands.
The defauit communication device at the power-on time is SIO (that is, the same state as when
SETDEV “COM2:" statement is executed.)

BASIC

(2) Communication control of RS-232C

(Transmission control)
With the default setting, the CS signal of RS-232C is used for transmission control. When a send
command is executed in BASIC, the PC-1600 does not start the transmission action immediately. It
waits until the CS signal of RS-232C goes high, then starts the transmission action. This
transmission control can be changed by SNDSTAT command:

SNDSTAT “COM1:”,63 (The transmission starts regardless of any control signals.)

SNDSTAT “COM1:”,55 (The CD signal is used for transmission control.)

SNDSTAT “COM1:",47 (The DR signal is used for transmission control.)
With the default setting, the PC-1600 would suspend the transmission action for ever if the
transmission control signal did not go high. This period of time for which the PC-1600 waits for
the transmission to be enabled, or the timeout value, can also be changed. If a finite time is
specified as the timeout value, when the transmission is not enabled for the specified time, the
transmission session results in an error.
SNDSTAT “COM1:",,20 (The timeout value is set to be 10 seconds.)
The timeout value to be specified in a SNDSTAT statement is in units of 0.5 second. When the
timeout value is set to be 0, the PC-1600 keeps waiting until the transmission is enabled.

{Reception control)
With the default setting, the PC-1600 starts the reception action regardiess of any control signals
of RS-232C. The following R8-232C signals can be used for reception control.
RCVSTAT “COM1:”,59 (The data reception action is enabled when the CS signal goes high.)
RCVSTAT “COM1:”,65 (The data reception action is enabled when the CD signal goes high.)
RCVSTAT “COM1:”,47 (The data reception action is enabled when the DR signal goes high.)
If data are sent to the PC-1600 while the specified control signal is low, the data are aborted.
Like the transmission control, a timeout value can also be set for the reception control. When a
finite time is set as the timeout value, if no data are sent to the PC-1600 for that period of time, the
reception session results in an error.
RCVSTAT “COM1:",,20 (If no data are received for more than 10 seconds, the reception
session results in an error.)
The timeout value to be specified in a RCVSTAT statement is in units of 0.5 second. When the
timeout value is set to be 0, the PC-1600 keeps waiting until data are sent to the PC-1600.

{3} Auto handshake mode
While “COM1:" is selected, if an OUTSTAT “COM1:” statement is executed, the PC-1600 is set in
the auto handshake mode. In the auto handshake mode, when the empty space in the receive

KRR

[0CS

(4)

(5)

{6)

)]

buffer becomes 8 bytes or less, the RS signal goes low. When the received data in the receive
buffer are read into the system and the remaining data in the received buffer becomes 8 bytes or
less, the RS signal goes high.

While the PC-1600 is in the auto handshake mode, if an INPUT, LPRINT or LLIST command is
executed to RS-232C or SIO, the RS and the ER signals go high.

Carriage-return (CR) code
When a LLIST, LFILES or LPRINT command is executed to RS-232C or SIO, every CR code included

in the transmission data can be converted to CR (no conversion), LF, or CR + LF by a PCONSOLE
*COMn:” statement. However, when an OPEN “COMn:” statement is executed, a CR code in a
PRINT# output or in an ASCIl save operation is always converted to CR + LF codes.

Communications by SETDEV command
By using SETDEV command, INPUT, LPRINT and LFILES commands can be executed to a

communication device.

SETDEV “COMnN:" Kl (The specified communication device is used as the input device for
an INPUT command.)

SETDEV “COMn:",PO (The specified communication device is used as the output device for
an LPRINT, LLIST or LFILES command.)

SETDEV “COMn:".KI,PO (The specified communication device is used as the input device for
an INPUT command and as the output device for an LPRINT, LLIST
or LFILES command.)

SETDEV “COMn:” (The input and the output devices for INPUT, LPRINT, LLIST and LFILES
commands are reset to the default standard devices:
the keyboard and the printer.)

Communication procedure

1. Set a baud rate with SETCOM command.

2. Specify a communication device and Kl and/or PO with SETDEV command.

3. Execute INPUT or LPRINT command.

4. If necessary, release Kl and/or PO with SETDEV command.

Communications by OPEN command

When you input and output data to and from RS-232C or SIO with an OPEN “COMn:” statement
and an INPUT# or PRINT# command, the data input/output action is performed in units of 256
bytes. If the last block of data to be transmitted is less than 256 bytes, the block of data is
transmitted when the communication device is closed.

Communication procedure

1. Set a baud rate with SETCOM command.

2. Open a communication device with OPEN command.

3. Execute INPUT# or PRINT# command.

4. Close the communication device with CLOSE command.

ON COMn GOSUB command

When the interrupt from a communication device has been declared by ON COMn GOSUB
command, reception of data at the specified communication device (RS-232C or Sl0O) causes an
interrupt. This interrupt is issued even when the communication device receives a control code

such as an XON, XOFF, SIN or SOUT code. if the subroutine to which control is jumped by .

occurrence of an interrupt needs to know whether there is any data to be read in the receive
buffer, this may be checked by using RXD$ function at the beginning of the subroutine.

i

10CS

3.6.2 Data Format of Communications
See section 5.7 “Precautions for Use of Serial Ports (RS-232C and SIO)”.

3.6.3 I0CS Routines for RS-232C and SIO

The I0CS routines described below must be called in the following procedure.
(1) Set the IOCS number of the routine to be called in the C register.

(2) If a channel number needs to be specified, set it in the D register.

Value to be set in D register (channel no.) Channel name
00Hccoomumsaswsssssss “COM:"
OTH eeeiriirierrecrccvennines “COM1:”
16 7.1 o A “COoM2:"
(3) Execute the following command:
CALL 01D8H 1

The table below lists the names, functions and I0CS Nos. of the IOCS routines related to the serial

ports. .

I0OCS Name Function 10CS NO.
CWCOM | Set communication parameters. 01H
CRCOM Read the current communication parameters. 02H
CSNDA ~~ | Transmit one byte of data. 03H
CRCVA Heceive one byte of data (if there is no data to read, wait until data are 04H

sent in.)

CRCV1 Receive one byte of data (do not wait even if there is no data to read.) 07H
CSETHS .~ | Set RS and ER signals to high in the auto handshake mode. OEH
CRESHS Set RS and ER signals to low in the auto handshake mode. OFH
CWOUTS ~ | Set the state of the outgoing control signals (RS and ER). 10H
CRCTRL .~ | Read the state of the control signals. 11H

Select a channel and set the input and output device selection para-

CWDEV meters for that channel. 12H
CRDEV Read the currently selected channel number and the input and output 13H
device selection parameters set by CWDEYV routine.
Enable the transmission only when the specified incoming control
CESND _ .~ signal (or signais) is high. 14H
Enable the reception only when the specified incoming control signal
CERCY {or signals) is low. 16H
CSBRK Send the specified number of break characters 16H
CSRCVB Reserve a receive buffer in memory. 17H
CCLRSB Clear the work area for transmission. 1BH
CCLRRB Clear the receive buffer. 1CH

67

10CS

CWCOM

I0OCS Number 01H
Function Set communication parameters.
Parameter HL = Starting address of the memory locations in which communication

parameters are stored
D = Channel number

Affected Register AF, AF

Remarks Communication parameters stored in memory
7~ Bl &
Address (7 & = YT Contents
HL Baud rate data low byte A
—- Value of 76800/baud rate
HL + 1 Baud rate data high byte =

HL + 2 Parameter data

MSB | b7 { b6 {b5 | b4 | b3 { b2 | b1 { DO | LSB

3 T B
4 stopbiengn 5 gresop

b2 0|1 (0 1

b3 0101 1

Character length }5 617 |8

0: Disable
1: Enable
0: Odd
1: Even

L XON/XOFF control {

Parity check {

L Parity {

0: Disable
1: Enable
0: Disable
1: Enable

SIN/SOUT control {

CRCOM

I0CS Number 02H

Function Read into DE register the starting address of the memory locations in which the
communication parameters are stored.

Parameter D = Channel number

Return DE = Starting address

Affected Register AF, AF', DE

(23]

CSNDA

I0CS

10CS Number

Function

Parameter

Return

03H

0

Transmit one byte of data in A register to the specified channel.
A = Data to be transmitted

If an error occurs, the error data is written in A register with the error bit set to

ll1 ”

MSB | b7 { b6 | b5 | b4 | b3 | b2 | b1 | bO | LSB

[—b'ﬁmeout error

»The BREAK key has been pressed.

Affected Register AF, AF
CRCVA
10CS Number 04H

Function

Parameter

Return

Read one byte of data from the receive buffer into A register. If there is no data to
be read from the receive buffer, the routine waits until data come in.

none

A = Received data
CF = 1 if an error has occurred.

Affected Register AF, AF’
CRCV1
IOCS Number 07H

Function

Parameter

Return

Aifected Register

Read one byte of data from the receive buffer into A register. If there is no data to
be read from the receive buffer, ZF is set to “1” and the routine returns.

none
A = Received data
ZF = 1 if there is no data in the receive buffer.

CF = 1 if an error has occurred.

AF, AF

A9

10GS

CSETHS

I0CS Number OEH

Function .Set RS and ER signals to high in the auto handshake mode.
Parameter none
Return none

Affected Register AF, AF’

CRESHS

I0CS Number OFH

Function Set RS and ER signals to low in the auto handshake mode.
Parameter none
Return none

Affected Register AF, AF

CWOUTS

10CS Number 10H

Function Set the state of the outgoing control signals (RS and ER) of the specified serial
port.

Parameter D = Channel number (effective only for RS-232C)

E = State of RS and ER control signals

MSB | b7 | b6 | b5 | b4 | B3 | b2 | bl b0 | LSB

FF 3T f o i
d 0 0 ¢ State of ER {

1: Low

0: High

1: Low

{0: Auto handshake mode

11: The states of ER and RS conform to the settings of bits 0 and 1.

o—pl

State of RS {

Return none

Affected Register AF, AF', DE

n

I0CS

CRCTRL

10CS Number 11H

Function Read the state of the control signals of the specified channel.

Parameter D = Channel number (effective only for RS-232C})

Return A = State of the control signals {expressed in the same format as for INSTAT

function of BASIC)

b7 | b6 | bS5 | b4 | b3 .| b2 | b1 | bO

T rTLrl

0 0 Ci IR CD CS RS ER

The data bits in A register correspond to the control signals as described
above. When a bit is “0”, this means that the correspording control signal is
high. When a bit is “1”, the signal is low.

Affected Register AF, AF

CWDEV

10CS Number 12H

Function Select a channel and set the input and output device selection parameters for that
channel.

Parameter Prepare the following data in A register.

b7 { b6 | b5 | b4 | b3 | b2 | b1 b0

rrt P
| | i
¢ 0 0 0 0 —Ki
{0: comi —erov—PQ
1: COM2
Return none

Affected Register AF, AF’

71

10CS

CRDEV

10CS Number 13H

Function Read the currently selected channel number and the input and output device
selection parameters set by CWDEV routine.

Parameter none
Return The following data is returned into A register.
by be bs ba b3 by by bg
[U A & A A
R
0 0 0 0 —Kl
PO
(0: COM1
11: comz2
[0: CLOSE
{1: OPEN
10CS Number 14H
Function Enable the transmission only when the specified incoming control signals (DR,

CD and/or CS) of the specified channel are high.

Parameter D = Channel number (effective only for RS-232C)
E = Specification of the control signals to be used for transmission control
MSB | b7 | b6 | b5 | ba | b3 | b2 | b1 | bO | LSB
A A A A
bl LT
0 0 0 DR CD CS 0 O

(Specify the desired control signals by setting the corresponding bits to “0”.)

For instance, if this routine is called with E = 08H, the transmission is
enabled when DR and CS are both high.

B = Timeout value (0 to 255) (Unit: 0.5 sec.)
If 0 is specified, the waiting time is set as infinite.

Return none

Affected Register AF, AF

79

CERCV

&

€
(p)

I0CS Number

15H

Function Enable the reception only when the specified incoming control signals (DR, CD
and/or CS) of the specified channel are high. '
Parameter D = Channel number (effective only for RS-232C)
E = Specification of the control signals to be used for reception control
MSB | b7 | b6 | b5 | b4 | b3 | b2 | b1 | bD | LSB
A A
rrr L
0 0 0 DR COD C5 O O
(Specify the desired control signals by setting the corresponding bits to “0".)
For instance, if this routine is called with E = 08H, the reception is enabled
when DR and CS are both high.
B = Timeout value (0 to 255) (Unit: 0.5 sec.)
if 0 is specified, the waiting time is set as infinite.
Return none
AffectedRegister AF, AF’
CSBRK
}OCS Number 16H

Function
Parameter

Return

Affected Register

Send the specified number of break characters.
B = Number of break characters

A = 00H: Normal termination
01H: The BREAK key was pressed during the execution of this routine.

AF, AF', BC

10CS

CSRCVB

I0OCS Number
Function

Parameter

Return

Affected Register

Remarks

CCLRSB

17H
Reserve a receive buffer in memory.

HL = Buffer size (0000H, or 0050H to 3FFFH) (Unit: bytes)
If HL = O00OH is specified, a receive buffer of 40 bytes is reserved in

memory.

A = 00H: Normal termination
Other than 00H: An error has occurred.

AF, AF

When this routine is executed, the transmission and.reception buffer and
error flags are cleared.

I0CS Number 1BH

Function Initialize the work area for transmission.
Parameter none

Return none

Affected Register AF, AF

CCLRRB

I0CS Number 1CH

Function Clear the reception buffer and the error flags.
Parameter none

Return none

Affected Register AF, AF

10CS

3.7 PRINTER

This section describes the 10CS routines related to the printer. First, the I0CS routines which are
executed by calling their entry address are explained, then the {OCS routines which are executed by
calling a specific address with the IOCS number set in C register are explained.
When one of these printer I0CS routines is executed, the following two addresses must always be
called immediately after the routine.

& Bank 4, Address 4029H

e Bank 4, Address 6777H
These two routines perform the post-processing of printer operation (such as turning off the printer
motor power and interrupt control). if they are not executed, the printer motor power may be left ON
and the key input from the keyboard may not be accepted. '

3.7.1 10CS Routines for Printer (1)
The |0CS routines described in this section can be executed as follows:

CALL <entry address> |
The table below lists the names, entry addresses, and functions of the I0CS routines.

Name Entry address \ Function

PCHEK i Eggg: Check whether the printer is ready.

POUT ‘ Biagk & Send one byte of character code to the printer
| 4023H P '
[

PKOUT l Bk & ‘ Send one byte of character code to the printer.
4026H 1 Y P k
|]

* Entry Address Bank 4, 4020H
Function Check whether the printer is ready.
Parameter none
feturn A = | bit7 | bit6 | bit5 | bita | bit3 | bit2 | bit1 | bito
R S R
b0 o |

!
E
The printer hardware has
not been initialized.
Significant only {Always 0

when the bitis 1. jAlways 0
The printer is in the pen change state.

The printer battery is low.

Zffected Register All registers

-

10CS

POUT

Entry Address Bank 4, 4023H

Function Send one byte of character code to the printer.
Parameter E = Character code
Return CF = 0: Normal termination
CF = 1: An error has occurred or the BREAK key has been pressed.
A = O0H: The BREAK key has been pressed.

= Qther than 00H: Error code (same as that of BASIC)

Affected Register Al registers

3.7.2 I0CS Routines for Printer (2)
The I0CS routines described in this section can be executed by calling address 4008H of bank 4 with
the I0CS number set in C register. When these routines are executed, the contents of all registers are

destroyed. 1
The table below lists the names, |OCS number, and functions of the |OCS routines. Those routines
indicated by © in the table are effective only in the graphics mode. The error code is the same as that

of BASIC.

Name | Function I0CS NO.

PINIT Initialize the printer. 00H
PTEXT Set the printer in the text mode. 01H
PGRAPH Set the printer in the graphics mode. 02H
PCSIZE Set the character size. 03H
PCOLOR Set the print color. 04H
PWIDTH Set the line width (characters/line). 06H
PLEFTM | Set the left margin. 07H
PPITCH ' Set the character pitch and the line height. 08H
PPAPER Set the paper type. 09H
PSCRL } Set the printing area on paper in the Y {vertical) direction. 0AH

PEOL Define the printer action for a CR code (ODH). 0BH
PZONE Set the print zone length for LPRINT command. OCH
PPENUP Lift up or push down the pen. ODH

PROTATE @ Set the direction of the print characters. OEH J
*Those routines indicated by @ are effective only in the graphics mode.
-n

10CS

Name Function ICCS NO.
PLTYPE@® | Set the line type. OFH
PHOME © Move the pen to the origin with the pen up. 10H .

MWI;SORGN @ Define the current pen position as the origin. T1H
PAMVUP © Move the pen in the absolute coordinate mode with the pen up. 12H
PRMVUP © Move the pen in the relative coordinate mode with the pen up. 13H
PAMVDN @ Move th; pen in the absolute coordinate mode with the pen down. 14H
PRMVDN @ ‘ Move the pen in the relative coordinate mode with the pen down. - 15H

——PjréS'F‘Perform the printing test. “ - 16H

PTAB Move the pen to the specified tab position. 17H

ALLOFF Turn off the printer motor power. 18H

PCUP Move the pen upward in character units with the pen up. . 1AH
PCDOWN Move the pen downward in character units with the pen up. 1BH

PCLEFT Move the pen to the left in character units with the pen up. 1CH

PCRIGHT Move the pen to the right in character units with the pen up. 1DH

‘ PGUP Move the pen upward in graphics units with the pen up. 1EH

PGDOWN Move the pen downward in graphics units with the pen up. 1FH

i PGLEFT Move the pen to the left in graphics units with the pen up. 20H
PGRIGHT Move the pen to the right in graphics units with the pen up. 1 21H
 PCHGPEN Change the pen. 22H
PRESET | Initialize the work area for the printer [OCS routines to the all-reset state.; 28H

PCR Move the pen to the left end (carriage-return action). i 29H

PDIRC Set the character printing direction. ‘ 2AH

PCRLE ”ivrl‘?a_/?eg:jeap::ir;':())'the left end of the next line {(carriage-return and 2BH

PMYFD Check how many lines the pen can be moved to the —Y direction. 2CH

PPYFD Check how many lines the pen can be moved to the +Y direction. 2DH

PBOXA ~ Draw a box in the absolute coordinate mode. oFH

PBOXR Draw a box in the relative coordinate mode. 30H]
HARESET | Initialize the printer hardware. 31H

“Those routines indicated by @ are effective only in the graphics mode.

77

10CS

PINIT

10CS

I0CS Number
Function
Parameter

Return

PTEXT

O00H
Initialize the printer work area.
none

CF = 1 if an error has occurred.
A = Error code

10CS Number
Function
Parameter

Return

Remarks

PGRAPH

01H
Set the printer in the text mode.
none

CF = 1 if an error has occurred.
A = Error code

When this routine is called, the following actions are also performed.
(1) If the pen is not at the left end, the pen is moved to the left end.
(2) CSIZE2 is set.

I0OCS Number

Function

Parameter

Return

Remarks

02H
Set the printer in the graphics mode.
none

CF = 1 if an error has occurred.
A = Error code

When this routine is called, the following actions are also performed.

(1) If the pen is not at the left end, the pen is moved to the left end.

(2) CSIZE2 is set.

(3) The printer is set in the same state as when ROTATE 0 is executed.

(4) The pen position when this routine has been completed is set as the origin.

hxdal

10CS

PCSIZE

I0CS Number O3H
Function Set the character size.
Parameter A = Character size (01H to 09H)

Return CF = 1if an error has occurred.
A = Error code

PCOLOR

{0CS Number 04H
Function Set the print color.
Parameter A = Print color (00OH to 03H)

Return CF = 1 if an error has occurred.
A = Error code

PWIDTH

${0CS Number 06H
Function Set the line width (characters/line).
Parameter A = Number of characters per line (10H to FFH)

Return CF = 1 if an error has occurred.
A = Error code

#amarks This routine is effective only in the text mode. The pen must be at the left end
before the routine is executed.

70

I0GS

PLEFTM

1QCS Number 07H

Function Set the left margin.
Parameter A = Number of characters for the left margin.
Return CF = 1 if an error has occurred.

A = Error code

Remarks This routine is effective only in the text mode. When this routine is executed, the
pen is moved to the specified printing position. ‘

PPITCH ‘ -

10CS Number 08H
Function Set the character pitch and the line height.

Parameter HL = Starting address of the memory locations in which the character pitch and
line height data are stored

Data that need to be stored in memory

Address Data
HL Character pitch value (04H to FFH)
If the value is O0H, the default character pitch is set.
HL+1 Line height value {04H to FFH)
If the value is 00H, the default line height is set.
Return CF = 1 if an error has occurred.

A = Error code

PPAPER

{0OCS Number 09H
Function Set the paper type.

Parameter A = 00H: Cut sheet
= QOther than 00H: Roll paper

~n

I0CS

Return CF = 1 if an error has occurred.
A = Error code (If the BREAK key has been pressed, then A = 00H is
returned.)

PSCRL

10CS Number 0AH

Function Set the printing area on paper in the Y (verticai) direction.
Parameter HL = Starting address of the memory locations in which the printing area data
are stored

Data that need to be stored in memory

Address | Data
HL Value of —Y direction (low byte) }If the value is 0000H, the default value
HL+1 Value of —Y direction (high byte) /is used.

HL+2 Value of +Y direction {low byte) }lf the value is 0000H, the default value
HL+3 Value of +Y direction (high byte) Jis used.

Return CF = 1 if an error has occurred.
A = Error code

Remarks The default values are:

=Y direction: Cut sheet 30
Roll paper 1354
+Y direction: Cut sheet 999
Roll paper 999
S Number 0BH

Define the printer action for a CR code (ODH).

A = 0: CR action when a code (0DH) is received..
1. LF action when a code (0DH) is received.
= 2: CR+LF action when a code {ODH) is received.

CF = 1 if an error has occurred.
A = Error code

[oF |

1QGS

VZANC
10CS Number OCH
Function Set the prinf zone fength to be used wihen & cormms /s vsep 2s 1he Data Oelimiter
in LPRINT statement.

Parameter A = Print zone length (in characters) (08H to 50H)
Return CF = 1 if an error has occurred.

A = Error code
PPENUP
{OCS Number ODH
Function Lift up or push down the pen.
Parameter A = FFH: Push down the pen.

= QOther than FFH: Lift up the pen.

Return CF = 1 if an error has occurred.

A = Error code
PROTATE

I0CS Number

Function

Parameter

OEH
Set the character printing ROTATION used in the graphics mode.

A = Character printing direction (O0H to 03H)

Return

PLTYPE

03H

ABC ——>

02H «—— 28V ABC— 00H

T <08V

CF = 1 if an error has occurred.
A = Error code

10CS Number

Function

Parameter

OFH

Set the line type to be used when drawing a line by PAMVDN, PRMVDN or
PBOXR routine.

A = Line type (00H to 09H) 00H
(1113] SRR et —————
02Hp— — — ——— — = e— e—— — —
03H— _ _— —_— —_— p— P
04H
05H

06H p—— _ _

07Hf——— —_— —_— —

08Hf——— —— —]

08H| No line is drawn.

jo 3o}

10CS

PAMVUP

10CS Number 12H
Function Move the pen in the absolute coordinate mode with the pen up.
Parameter HL = Starting address of the memory locations in which coordinate data are
stored
B = Number of coordinate data items stored in the memory locations (Number of
bytes/4)
Coordinate data prepared in memory
Value to be set
Address Contents in B register
HL Low byie
L+t | X0 {High byte ;
HL+2 Yo {Low byte ' ~
HL+3 High byte
HL+4 X1 {Low byte
HL+5 High byte -
HL+6 Y1 {Low byte
HL+7 High byte
HL+20 X5 {Low byte
HL+21 High byte 6
HL+22 Y5 {Low byte
HL+23 High byte
Return CF = 1 if an error has occurred.
A = Error code (If the BREAK key has been pressed, then A = 00H is
returned.)
Remarks This routine is effective only in the graphics mode. The pen is moved from the

start point (X0,Y0) to the coordinate points (X1,Y1), {X2,Y2} ... up to (X5,Y5), one
after another.

PRMVUP

I0CS Number 13H
Function TMove TS PEN N INT THRINE HHIEHREE HRKEHER IR SRR,
Parameter HL = Starting address of the memory locations in which coordinate datz z

stored
B = Number of coordinate data items stored in the memory locations (Number =

bytes/4)

10CS

Coordinate data prepared in memory

Value to be set
Address Contents in B register
HL Low byte :
L+t | X0 {High byte]
HL+2 Yo {Low byte
HL+3 High byte
HL+4 X1 {Low byte
HL+5 High byte g
HL+6 Y1 {Low byte
HL+7 High byte
HL+20 X5 {Low byte
HL-+21 High byte 6
HL+22 Y5 {Low byte
HL+23 High byte
Return CF = 1 if an error has occurred.
A = Error code (If the BREAK key has been pressed, then A = 0O0H is
returned.)
#amarks This routine is effective only in the graphics mode. The pen is moved from the
start point {X0,Y0) by the relative displacements given as (X1,Y1), (X2,Y2) ... up to
{X5,Y5), one after another.
PAMVDN
{0CS Number 14H
Fynction Move the pen in the absolute coordinate mode with the pen down.
#arameter HL = Starting address of the memory locations in which coordinate data are
stored
B = Number of coordinate data items stored in the memory locations {(Number of
bytes/4)

85

10CS

Coordinate data prepared in memory

Value to be set
Address Contents in B register
HL Low byte
i+t | X0 {High byte .
HL+2 Yo {Low byte
HL+3 High byte
HL+4 X {Low byte
HL+5 High byte 2
HL+6 Y1 {Low byte
HL+7 High byte
HL+20 X5 {Low byte
HL+21 High byte ¢
HL+22 Y5 {Low byte
HL+23 High byte , N
Return CF = 1 if an error has occurred.
A = Error code (If the BREAK key has been pressed, then A = 00H is
returned.)
Remarks This routine is effective only in the graphics mode. The pen is moved from the

_start point {X0,Y0) to the coordinate points (X1,Y1), (X2,Y2) ... up to (X5,Y5), one
after another.

PRMVDN

10CS Number 15H

Function Move the pen in the relative coordinate mode with the pen down.
Parameter HL = Starting address of the memory locations in which coordinate data are
stored
B = Number of coordinate data items stored in the memory locations {(Number of
bytes/4)

RR

10CS

Return CF = 0: Normal termination
= 1: An error has occurred.
A = Error code (if the BREAK key has been pressed, then A = Q0H is
returned.)
PGDOWN
I0CS Number 1FH
Function Move the pen downward in graphics units with the pen up.
Parameter HL = Displacement {Unit: dots) (0 to 2047}
Return CF = 0: Normal termination
= 1: An error has occurred.)
A = Error code (if the BREAK key has been pressed, then A = O0H is
returned.)
PGLEFT
IOCS Number 20H
Function Move the pen to the left in graphics units with the pen up.
Parameter . HL = Displacement (Unit: dots) (0 to 2047)
Return CF = 0: Normal termination

PGRIGHT

= 1: An error has occurred.
A = Error code (If the BREAK key has been pressed, then A = O0H is
returned.)
HL = Number of dots the pen couid not move because the pen reached the edge
of the printing area

10CS Number

Function

Parameter

21H
Move the pen to the right in graphics units with the pen up.

HL = Displacement (Unit: dots) (0 to 2047)

10CS

Return CF = 0: Normal termination
= 1: An error has occurred.
A = Error code {If the BREAK key has been pressed, then A = O0H is
returned.)
PCLEFT
10CS Number 1CH
Function Move the pen to the left in character units with the pen up. If such a pen
movement that will go beyond the printing area is specified, the pen stops at the
edge of the printing area.
Parameter A = Displacement (Unit: characters) (00H to FFH)
Return CF = 0: Normal termination

PCRIGHT

= 1: An error has occurred.
A = Error code {If the BREAK key has been pressed, then A = O0H is
returned.)

IOCS Number

Function

Parameter

Return

PGUP

1DH

Move the pen to the right in character units with the pen up. If such a pen
movement that will go beyond the printing area is specified, the pen stops at the
edge of the printing area.

A = Displacement (Unit: characters) {00H to FFH)

CF = 0: Normal termination
1: An error has occurred.
A = Error code (If the BREAK key has been pressed, then A = Q0H is
returned.)

10CS Number

Function

Parameter

1EH
Move the pen upward in graphics units with the pen up.

HL = Displacement {(Unit: dots) {0 to 2047)

Q0

10CS

Return

Remarks

ALLOFF

CF = 1 if an error has occurred.
A = Error code

This routine is effective only in the text mode.

IOCS Number

18H

Function Turn off the printer motor power.

Parameter none

Return none o _ N

PCUP

}0CS Number TAH

Function Move the pen upward in character units with the pen up. {f such a pen movement
that will go beyond the printing area is specified, the pen stops at the edge of the
printing area.

Parameter A = Displacement (Unit: characters} (00H to FFH)

Return CF = 0: Norma! termination

PCDOWN

= 1: An error has occurred.
A = Error code (If the BREAK key has been pressed, then A = 00H is
returned.)

10CS Number

Function

Parameter

1BH
Move the pen downward in character units with the pen up. If such a pen
movement that will go beyond the printing area is specified, the pen stops at the

edge of the printing area.

A = Displacement (Unit: characters) {(00H to FFH)

Return

Remarks

PTEST

I0CS

Coordinate data prepared in memory

Value to be set
Address | Contents in B register ,
HL Low byte
HL+1 %O {High byte 3
HL+2 Yo {Low byte
HL+3 High byte
HL+4 X1 {Low byte
HL+5 High byte 2
HL+6 Y1 {Low byte
HL+7 High byte
HL+20 | {Low byte
HL+21 High byte 6
HL+22 | g {Low byte
HL+23 High byte

CF = 1 if an error has occurred. _
A = Error code (If the BREAK key has been pressed, then A = 00H is
returned.)

This routine is effective only in the graphics mode. The pen is moved from the
start point (X0,Y0) by the relative displacements given as (X1,Y1), (X2,Y2) ... up to
{X5,Y5), one after another.

{0CS Number
Function

Return

Remarks

PTAB

16H
Perform the printing test.
CF = 1 if an error has occurred.
A = Error code (If the BREAK key has been pressed, then A = 00H is

returned.)

When this routine is completed, the printer is set in the text mode.

10CS Number
Function

Parameter

17H
Move the pen to the specified column position.

A = Column number

urn

PCHGPEN

HL

= 0: Normal termination

1: An error has occurred.
A = Error code (If the BREAK key has been pressed, then A = 00H is

returned.)

IGCS

Number of dots the pen could not move because the pen reached the edge

of the printing area

I0CS Number

Function

Parameter

Return

PRESET

22H

Move the pen to the pen change position, or move the pen back to the position

where the pen stayed before the pen change.

A = 00H: Move the pen to the pen change position. [f the pen is already at the
pen change position, move the next color pen to the pen change

= 01H: Move the pen back to the original position.

CF=1if an. error has occurred.

position.

A = Error code

I0CS Number 28H

Function initialize the work area for the printer IOCS routines to the all-reset state.
Parameter none

PCR

I0CS Number 23H

Function Move the pen to the left end (carriage-réturn action).

Parameter none

Return CF = 1 if an error has occurred.

A = Error code

04

10CS

PDIRC

I0CS Number
Function

Parameter

Return

PCRLF

2AH
Set the character printing direction for printing in the graphics mode.

A = Printing direction (00H to 03H)
03H

02H —s-00H

01H

CF = 1 if an error has occurred.
A = Error code

10CS Number
Function
Parameter

Return

Remarks

PMYFD

2BH
Move the pen to the left end of the next line {carriage-return and line-feed action).
none

CF = 1 if an error has occurred.
A = Error code

This routine causes nothing in the graphics mode.

IOCS Number

Function

Parameter

Return

Remarks

2CH

Check how many lines the paper can be fed from the current pen position to the
Y (forward) direction.

none
HL = Number of lines the paper can be fed

This routine is effective only in the text mode.
If roll paper is used, HL = FFFFH is returned.

10CS

PPYFD

IOCS Number 2DH

©

Function Check how many lines the paper can be fed from the current pen position to the
+Y (backward) direction.

Parameter none
Return HL = Number of lines the paper can be fed
Remarks This routine is effective only in the text mode.

PBOXA / PBOXR

{0OCS Number 2FH (for PBOXA); 30H (for PBOXR)

Function Draw a box in the absolute coordinate mode (PBOXA) or in the relative
coordinate mode (PBOXR).

Parameter HL = Starting address of the memory locations in which coordinate data are
stored

Coordinate data prepared in memory

eSS Contents
HEL | Start point X coordinate (—2048 to 2047) {h?;\;\ %\ct‘:
:tié Start point Y coordinate (—2048 to 2047) {';{?;";‘ ‘mz
gtig | Diagonal point X coordinate (—2048 to 2047) {il:i?g\lfx %";/ttee
:t:g Diagonal point Y coordinate (—2048 to 2047) {h?;%‘cg

*Specify a coordinate value in two bytes (a negative value in the complement expression).
That is, 0 to 2047 is expressed as 0000H to 07FFH, and —2048 to —1 as F800H to FFFFH.

Return CF = 1 if an error has occurred.
A = Error code (If the BREAK key has been pressed, then A = O0H is
returned.)
Remarks This routine is effective only in the graphics mode.

The pen position when the routine has been completed is at the start point.

no

0CS

HARESET

I0CS Number 31H

Function Initialize the printer hardware.
Parameter none
Remarks 1. For the power-on processing, call this routine immediately after an 1OCS No.
01H routine.
2. For the all-reset processing, call this routine immediately after an IOCS No. 28H
routine.

3.8 DISK
3.8.1 Floppy Disk Format :\

A floppy disk is formatted to the tracks and sectors as shown below.

Sector 0
Sector 7

Track 0

Sector 1

Logical sector number

Sector 6

Sector 5

Sector 2

Sector4 Sector 3

The sectors are given a serial number (logical sector number) of from 0 to 127, starting from sector 0
of track 0 through to sector 7 of track 15.

10CS

3.8.2 Specifications of Floppy Disk

@ & ¢ & o o o

3.
(n

(2)

(3)

Number of tracks per side: 16
Number of sectors per track: 8
Number of bytes per sector: 512
Number of sectors per FAT: 1
Number of FATs: 2
Number of logical sectors per cluster: 1
Maximum files per side: 48
8.3 File Management

Arrangement of logical sectors
The logical sectors are classified into four areas and are arranged as shown in the figure below.

Boot sector area

. . Logical sector No.
. File allocation table (FAT) area ~° ol Boot sector
Logical sectors .
Directory area
¥

Data area 1) &AT
2| FAT (back-up)
3] Directory
4} Directory
5 Directory
6] Data
7l Data

127]]

Boot sector
At power-on time, the contents of the boot sector are read out to the buffer and checked whether
they are a boot program.

FAT

The file allocation table (FAT) is a map indicating which files are occupying where on the disk.

Files on a disk are physically managed in the units called clusters, and each cluster is managed by

one byte of cluster information written in FAT.

The first byte of FAT contains the disk format ID code (F2H) and the second and the following

bytes contain the mapping information of the data area. The mapping information consists of 122

bytes of data, each of which represents information of a particular cluster and they are written in

the order of from cluster 1 to cluster 122 (the clusters 1 to 122 respectively correspond to logical

sectors 6 to 127.) Each cluster information has the following meanings:

00H: This means that the cluster is not used.

01H to 7AH: This means that the cluster is used and the value designates the cluster number of
the cluster that should come after the currently concerned cluster.

FOH: This means that the cluster is the last cluster of the file.

nE

10CS

(4) Directory
The directory contains information about each file on the disk and uses 32 bytes of area per file.

The directory occupies 3 sectors of area on the disk, and since one sector consists of 512 bytes, 48
files (512 x 3/32) can exist on each side of the disk.
Each file information (32 bytes) consists of the following items:

O0H 08H 0BH OCH
. . Attri-
File name Extension biite Reserved
10H 16H .18H 1AH 1CH 1FH
Reserved Update time | Update date First cluster File size
number

* The location of each item such as 08H or OCH is the offset from 00H.

(1) File name {00H to 07H)
Stores the file name. If the file name is less than 8 characters, the space is filled with space
characters (code 20H). i

{(2) Extension (08H to 0AH)
Stores the extension. If no extension is given or if the extension is less than 3 characters, the

space is filled with space characters (code 20H).
{3) Attribute {0BH)
Stores the attributes of the file. The bits of this byte have the following meanings:
Bit O: 0 = Read/write 1 = Read only
Bits 1 to 7: Reserved
(4) Reserved area (0CH to 15H)
Always filled with 00H.
{5) Update time {16H and 17H)
Stores the time when the file is created or updated.

17H , 16H
L i T T T T T T T T LN S | T T T]
k] 1 i 1 1 " 3 A . - H % E.. N 1 1 i

Hour Minute Second/2

(6} Update date {18H and 19H)
Stores the date when the file is created or updated.

-|-19.H..,4
l

18H

SN W | L L

Year Month Day

(7) First cluster number (1AH and 1BH)
Stores the cluster number of the first cluster used for the file. 1AH stores this cluster number
and 1BH always stores 00H.

{8) File size {1CH to 1FH)
Stores the size of the file in bytes. The size data are written from 1CH in the order of low byte
and high byte.

QR

I0CS

3.8.4 I0CS Routines for Floppy Disk
This section describes the 10CS routines related to the floppy disk. These routines can be called as
foliows:
(1) set the desired parameters,
(2) set the IOCS number in C register, and
(3) call address 4008H of bank 5.
The work area for the IOCS routines must be reserved before they are executed.
The table below lists the I0CS routines for the floppy disk.
The drive number described as a parameter in the following explanation designates one of the
following drives (the PC-1600 virtually supports two disk drives):
01H: X drive

02H: Y drive
The error information, if an error has occurred, is returned to A register expressed as an 8-bit code.

These bits represent the following errors and they are significant when the corresponding bits are 1.
Bit 0: Drive not ready/time out
Bit 1: Access error
Bit 2: "
Bit 3: The requested sector could not be found.
Bit 4: Head seek error
Bit 5: Disk write protected
Bit 6: Low battery
Bit 7: Other errors (e.g., no disk is set in the drive.)

Name Function {OCS No.
DSKINIT Initialize the disk drive. 80H
CNCTDRV | Read the number of disk drives connected. 81H
RESTORE @ Move the disk head to track 0. 82H
FORMAT Format the floppy disk. 83H
DREAD ; Read the contents of‘specified sectors. 84H
DWRITE ; Write data into specified sectors. 85H
DVERIFY . Verify the contents of specified sectors with data in memory. 86H
GETDRVST Read the state of the disk drive. 87H
HFREAD i Read the contents of the first half (256 bytes) of a specified sector. 88H
HFVERIFY T;xe;rm rt:ze contents of the first half (256 bytes) of a specified sector with data in 89H

nwz

I0CS

DSKINIT

i0CS Number

Function

Parameter

Return

Affected
Register

CNCTDRV

80H
Initialize the disk drive specified by A register.
A = Drive number

CF = 0: Normal termination
= 1: An error has occurred. A = Error code

All registers except for background registers

I0CS Number 81H

Function Read the number of disk drives connected.
Parameter none

Return A = Number of disk drives connected
Affected AF, BC, IY

Register

RESTORE

I0CS Number 82H

Function

Parameter

Return

Affected
Register

Move the head of the disk drive specified by A register to track 0.
A = Drive number

CF = 0: Normal termination
= 1: An error has occurred. A = Error code

All registers except for background registers

FORMAT

... locs

10CS Number
Function
Parameter

Return

Affected
Register

DREAD

83H
Format the floppy disk set in the disk drive specified. by A register.
A = Drive number

CF = 0: Normal termination
= 1: An error has occurred. A = Error code

All registers except for background registers

1I0CS Number

Function

Parameter

Return

Affected
Register

Remarks

84H

Read data sequentially from specified sectors into memory.

The first sector to be read is specified by D and E registers, and the number of
sectors to be read is specified by B register. The starting address of the memory
locations to which the data are written is specified by HL register.

A = Drive number

B = Number of sectors

D = Track number of the first sector (00H to OFH)
E = Sector number of the first sector (00H to 07H)
HL = Starting address of the memory locations

CF = 0: Normal termination
= 1: An error has occurred. A = Error code

All registers except for background registers

The sectors to be read can be on more than one track. If an invalid track number
or sector number is specified, a proper read action may not be guaranteed.

nn

l0CS

DWRITE

I0CS Number

Function

Parameter

Return
Affected
Register

Remarks

DVERIFY

85H

Write sequentially the contents of consecutive memory locations into specified
sectors.

The starting address of the memory locations from which data are read is
specified by HL register. The first sector to write is specified by D and E registers,
and the number of sectors to write is specified by B register.

A = Drive number

B = Number of sectors v

D = Track number of the first sector {O0H to OFH)
E = Sector number of the first sector (00H to 07H)
HL = Starting address of the memory locations

CF = 0: Normal termination
= 1: An error has occurred. A = Error code

All registers except for background registers

The sectors to write can be on more than one track. If an invalid track number or
sector number is specified, a proper write action may not be guaranteed.

iIOCS Number

Function

Parameter

Return

86H

Verity the contents of specified sectors with the contents of specified memory
locations.

The first sector to be verified is specified by D and E registers, and the number of
sectors to be verified is specified by B register. The starting address of the
memory locations is specified by HL register.

A = Drive number
B = Number of sectors
D = Track number of the first sector (00H to OFH)
E = Sector number of the first sector (00H to 07H)
HL = Starting address of the memory locations
CF = 0: Normal termination
= 1: An error has occurred.
A = Error code (If it is a verity error, then O0H is returned to A register
and the number of the sectors that were not verified is returned to B
register.)

10N

Affected
Register

Remarks

GETDRVST

l0CS

All registers except for background registers

The sectors to be verified can be on more than one track. If an invalid track
number or sector number is specified, a proper verify action may not be
guaranteed.

I0OCS Number
Function
Parameter

Return

Affected
Register

HFREAD

87H
Read the state of the disk drive and floppy disk.
A = Drive number

CF = 0: A = State of disk drive
A: Bit 0: This bit is set to “1” if the disk drive is in operation.

Bit 1: Always “0”

Bit 2: This bit is set to “1” if the disk drive door has been opened (for disk
change for example) after the previous execution of one of the disk I0OCS
routines before the execution of this GETDRVST routine. (This bif is
significant only when bit 0 = “0".)

Bit 3: This bit is set to “1” if a floppy disk is set in the disk drive.

Bit 4: Always “0”

Bit 5: Always “0”

Bit 6: This bit is set to “0” if the floppy disk is write-protected. (This bit is
significant only when bit 3 is “1” and bit 7 is “0”.)

Bit 7: This bit is set to “1” if the disk drive is not ready.

CF = 1: The specified disk drive is not connected.

All registers except for background registers

I0CS Number

Function

Parameter

88H

Read the contents of the first half 256 bytes of the sector specified by D and E
registers into the memory locations whose starting address is specified by HL
register. ’

A = Drive number

D = Track number {O0H to OFH)

E = Sector number {00H to 07H)

HL = Starting address of the memory locations

1n4

l0CS

Return
Affected
Register

Remarks

HFVERIFY

0: Normal termination
1: An error has occurred. A = Error code

CF

All registers except for background registers

If an invalid track number or sector number is specified, a proper read action may
not be guaranteed.

iOCS Number

Function

Parameter

Return

Affected
Register

Remarks

83H

Verify the contents of the first half 256 bytes of the sector specified by D and E
registers with the contents of the memory locations whose starting address is
specified by HL register.

A = Drive number

D = Track number (O0H to OFH)

E = Sector number (00H to 07H)

HL = Starting address of the memory locations

CF = 0: Normal termination
= 1: An error has occurred.
A = Error code (If it is a verify error, A = 00H is returned.)
All registers except for background registers

If an invalid track number or sector number is specified, a proper verify action
may not be guaranteed.

4NN

I0CS

3.8.5 Processing at Power-On Time

If a floppy disk drive is connected to the PC-1600, the following processing is performed to the disk

drive when the PC-1600 is powered on.

1. Whether the disk drive is properly connected is checked, and the work area for floppy disk drive is
reserved.

2. The contents of the boot sector are read. If there is a boot program, the program is executed.
If the content of the fourth byte of logical sector 0 (the boot sector) is C3H, this means that there is
a boot program in the boot sector. In this case, the program execution starts from the 33rd byte of
logical sector 0.

3. If the PC-1600 is in the RUN mode when it is powered on, the PC-1600 searches for a file named
“AUTORUN.BAS". If the file exists, it is loaded and executed.

4Nn

10CS

3.9 TIMER / ANALOG PORT
This section describes the IOCS routines for the timer and the analog port. These routines can be
called as follows:
(1) set the IOCS number of the desired routine in C register, and
(2) call the address 01D5H:
CALL 01D5H
For example, to call the SBEEP I0CS routine to generate a key clicking sound, execute the following:
LD C,01H
CALL 01D5H
The table below lists the names, functions, and 10CS numbers of the IOCS routines related to the

{imer and the analog port.

10CS Name f Function {0OCS No.
SINIT ; Initialize the timers and the analog input port. s 00H
SBEEP ; Generate a key clicking sound. ‘I 01H J
SWRT Set a date and time for the calendar clock. # 02H
SRRT Read the current date and time of the calendar clock. 03H -
SWWT ' Set a date and time for the wakeup timer. | 04H
SWRT Read the current settings of date and time of tl:ne wakeup timer. " 05H
SWAIT Set a date and time for the alarm1 timer (same as ON TIME$ command). 06H
SRA1T— Read the current settin;s of dame and time of the alarm1 timer. i 07H
SWA2T Set a date and time for the alarm2 timer (same as ALARM$ command). 08H
SRA2T Read the current settings of dame and time of the atarm2 timer. 09H
SWMSK , Set the interrupt mask for SC-7852. 10H
SRMSK : Read the cu n:;r:t setting of the interrupt mask for SC-7852, Jx 11H
SRIRQ | Read the current interrupt cause for SC-7852. | 12H
SRINP . Read the state of the Ci signal of RS-232C port. 13H
] SWPON \ Set a mask for the power-on conditions. 14H
SRAQ Read the digital value of the supply voltage of the PC-1600 main unit. 18H
SRA1 Read the digitaﬁrlr value of the voltage input at the analo;nput port. 19H
SRA2 Read the digital value of the CE-1600P battery voltage, 1AH
SRPON ‘ Read the settings of the mask for the power-on conditions. 21H
SWAB , Set the conditions for alarm beep generation. 22H
- i
SRAB g\?\E/}XBﬂ:’ZS;}i::m settings of the alarm beep generation conditions set by 23H
SWATA ’ %?Jrgsrct)'m‘tvxfare int;rrupt trigger !e:/:e_l_sn;‘or a digital value of the analog l 24H

SINIT

10CS

I0CS Number 00H
Function Initialize the timers and the analog input port.
Parameter A = 00H: Initialize to the ALL RESET state.
= 01H: Initialize to the power-on state that is given after the power is turned off
by the OFF key.
= 02H: Initialize to the power-on state that is given after the power is turned off
by the auto power-off function.
Return none
Affected Register AF
SBEEP
10CS Number 01H
Function Generate a key clicking sound.
Parameter none
Return none
Affected Register AF
SWRT
{OCS Number 02H
Function Set a date and time for the calendar clock.
~ Parameter HL = Starting address of the memory locations in which the date and time data

are stored

anr

10CS

Return
Affected Register

Remarks

SRRT

Contents
Address
Upper 4 bits Lower 4 bits
HL 0 Month: 0to C

HL+1 Day (tenth digit): 0to 3 Day (unit digit): 0to 9
HL+2 Hour {tenth digit): 0 to 2 Hour {unit digit): 0to 9
HL+3 Minute (tenth digit): 0to 6 Minute (unit digit): 0to 9
HL+4 Second (tenth digit): 0to 6 Second {unit digit): 0to 9

*If the content of the upper or lower 4 bits is set to "F”, that item is not updated
and remains with the old value. For instance, if the upper 4 bits of address
(HL+1) is set to "F”, the tenth digit of “day” is not updated.

none

AF, HL, BC

The contents of the memory locations specified by HL to HL+4 are destroyed.

10CS Number

03H

Function Read the current date and time of the calendar clock into the memory locations
whose starting address is specified by HL register. The data format is the same as
used in SWRT routine. '

Parameter HL = Starting address of the memory locations

Return none

Affected Register AF, HL, BC

10CS Number 04H

Function

Parameter

Set a date and time for the wakeup timer.

HL = Starting address of the memory locations in which the date and time data
are stored

ENaYal

10CS

Contents
Address
Upper 4 bits Lower 4 bits
HL 0 Month: 0to C

HL+1 Day (tenth digit): 0to 3 Day (unit digit}: 0to 9
HL+2 Hour (tenth digit): 0to 2 Hour (unit digit}: 0to 9
HL+3 Minute (tenth digit): 0to 6 Minute (unit digit): 0to 9
HL+4 0 0

*if the content of the upper or lower 4 bits is set to “F”, that item is not
referenced.

*When thisroutine is called, the wakeup interrupt is disabled, that is, the wakeup
event is not performed even when it reaches the wakeup time. -

Return none
Affected Register AF, HL, BC
SRWT

I0OCS Number 05H

Function Read the current settings of date and time of the wakeup timer into the memory
locations whose starting address is specified by HL register. The data format is
the same as used in SWWT routine except that nothing is written to address
HL+4.

Parameter HL = Starting address of the memory locations

Return none

Affected Register AF, HL, BC

SWA1T

i0OCS Number 06H

Set a date and time for the alarm1 timer. The alarm1 timer is used for ON TIMES$
command of BASIC.

HL = Starting address of the memory locations in which the date and time data
are stored

4N

10CS

Contents
Address
Upper 4 bits Lower 4 bits
HL (0 Month: 0to C

HL+1 ; Day (tenth digit): 0to 3 Day (unit digit): 0to 9
HL+2 ! Hour (tenth digit): 0 to 2 ! Hour (unit digit): 0 to 9
HL+3 Minute (tenth digit): 0to 6 Minute (unit digit): 0 to 9
HL+4 0 0

*If the content of the upper or lower 4 bits is set to “F”, that item is not
referenced.

Return none
Affected Register AF, HL, BC

SRA1MT

IOCS Number 07H

Function Read the current settings of date and time of the alarm1 timer into the memory
locations whose starting address is specified by HL register. The data format is
the same as used in SWA1T routine except that nothing is written to address
HL+4.

Parameter HL = Starting address of the memory locations

Return none

Affected Register AF, HL, BC

SWA2T

I0OCS Number 08H

Function

Other items

Set a dame and time for the alarm2 timer. The alarm2 timer is used for ALARM$
command of BASIC,

Same as those of SWA1T routine

10CS

SRA2T

IOCS Number 09H
Function Same as SRA1T except that this routine is for the alarm2 timer.
Other items Same as those of SRA1T routine

SWMSK

{OCS Number 10H
Function Set the interrupt mask for SC-7852.
Parameter A = Mask data

{Set those bits corresponding to the interrupt causes to “1” if you want to
mask them, or to “0” if you do not want to mask them.)

Interrupt cause | Mask bit set in A register
Interrupt by the wakeup timer bit 7 (MSB)
Interrupt by the alarm1 timer bit 6
Interrupt by the alarm2 timer bit 5
interrupt by the 1S signal bit 2
Interrupt by the 0.5S signal bit 1
Return none
Affected Register AF
0OCS Number 11H
Function Read the current settings of the interrupt mask for SC-7852.

Parameter none
Return A = Maskdata

{The interrupt causes are currently masked if those bits corresponding to the
interrupt causes are “1”, or they are currently masked if the bits are “0".)

1NN

10CS

Interrupt cause Mask bit set in A register

Interrupt by the wakeup timer bit 7 (MSB)
Interrupt by the alarm1 timer bit 6
interrupt by the alarm2 timer bit 5
Interrupt by the 18 signal bit 2
Interrupt by the 0.5S signal bit 1

Affected Register AF

10CS Number 12H

Function Read the current interrupt cause for SC-7852.

Parameter none

Return A = Interrupt cause

{If an interrupt has occurred, the bit corresponding to that interrupt cause is
set to “1”. If an interrupt has not occurred, the bit is set to “0".)

Interrupt cause Bits set in A register

interrupt by the wakeup timer bit 7 (MSB)
Interrupt by the alarm1 timer bit 6
Interrupt by the alarm2 timer bit5
Interrupt by the 1S signal ; bit 2
Interrupt by the 0.5S signal 1 bit 1

Affected Register AF

IOCS Number 13H

Function Read the state of the Cl signal of RS-232C port.

Parameter none

44N

10CS

Return A = State of Cl signal
(Bit 5 of the byte in A register indicates the state of the Cl signal: If the Cl
signal is high, then bit 5 = 0. If it is low, then bit 5 = 1.)

Affected Register AF

SWPON

10CS Number 14H
Function Set a mask for the power-on conditions.
Parameter A = Mask data

(If those bits corresponding to the power-on conditions are set to “1”, they
are masked.)

b7

b6

bb

olol ol o

b4

b3 | When the power is on, a beep is generated once at every o’'clock.

If b1is setto “1”, a beep is generated every second starting from seven seconds

b2 before the PC-1600 is powered on by a wakeup event.

b1 | The PC-1600 can be powered on by the wakeup timer.

b0 | The PC-1600 can be powered on by the Cl signal of RS-232C.

Return none
Affected Register AF

Remarks If the PC-1600 can be powered on by the wakeup timer, the interrupt mask bit 7
must also be set.

3CS Number 18H
:nction Read the digital value of the supply voitage of the PC-1600 main unit.

ameter none

[0CS

Return

Affected Register

Remarks

SRA1

A = Supply voltage value
AF

This routine is used for monitoring the supply voltage of the PC-1600 main unit. if
the value is less than AFH, it is judged as the low battery. The low battery state is
released when the value becomes greater than BEH.

IOCS Number 18H

Function Read the digital value of the voltage input at the analog input port.
Parameter none ’
Return A = Voltage value

Affected AF

Register

SRAZ

IOCS Number 1AH

Function Read the digital value of the supply voltage of the peripheral device.
Parameter none

Return A = Voltage value

Affected AF

Register

Remarks This routine is used for monitoring the Ni-Cd battery supply voltage of the

CE-1600P. If the value is less than A8H, it is judged as the low battery.

SRPON

10CS

IOCS Number 21H
Function Read the current settings of the mask for the power-on conditions (that is, the
current mask data set by SWPON routine.)
Parameter none
Return A = Mask data (The data format is the same as used for the parameter of SWPON
routine.)
Affected AF
Register
10CS Number 22H
Function Set the conditions for alarm beep generation.
Parameter A = 00H: No beep is generated even when any alarm event occurs.
= 01H: A beep is generated only when an alarm1 event occurs.
= 02H: A beep Is generated only when an alarm?2 event occurs.
= 03H: A beep is generatedwhen either alarm1 or alarm2 event occurs.
Return none
Affected AF
Register
SRAB
10CS Number 23H

Function

Parameter
Return

Affected
Register

Read the current setting of the alarm beep generation conditions set by SWAB
routine.

none
A = Data set by SWAB routine

AF

P Nal

10CS

SWA1A

I0CS Number 24H

Function Set the software interrupt trigger levels for a digital value of the analog input
port.
Parameter H = Upper limit value

L = Lower limit value

Return none
Affected AF
Register

3.10 BEEP

Thic section describes the IOCS routines for the beep. The table below lists the names, functions, and
entry addresses of these routines. The routines can be called by using CALL instruction of Z80 as

follows:
CALL <Entry address>

Name Entry address Function
BOUT 01B4H Generate beeps of the specified tone and duration. .
SOuUT 01B7H Generate one beep of the specified tone and duration.
SWAIT 01BAH Wait for a specified period of time.
BONOFF 01BDH Enable or disable the beep.

<4 A

l0CS

BOUT
Entry Address 01B4H
Function Generate beeps of the specified tone and duration.
Parameter A = Tone data (00H to FFH)

BC = Duration data (0000H to FEFFH)

DE = Number of times (0000H to FFFFH)
Return CF = 0: Normal termination

= 1: The execution of the routine was halted by the BREAK key.

Affected AF
Register
Remarks The frequency of a beep is determined by the tone data (set in A register) as

SOUT

follows:

Frequency = 1300000/(166+22%A) [Hz]
The duration of a beep is determined by the duration data (set in BC register) and
the tone data {set in A register) as follows:

Duration = BCX(166+22%A)/1300000

= BCf/frequency [second]

When the BREAK key is pressed, the beeping action stops in the middle and the
routine is terminated. This routine generates beeps regardless of the BEEP
ON/OFF statement.

Entry Address
“Function

Parameter

Dther items

01B7H
Generate a beepof the specified tone and duration.

A = Tone data (O0H to FFH)
BC = Duration data (0000H 1o FEFFH)

Same as BOUT

115

|0CS

SWAIT

Entry Address

01BAH

Function Wait for a specified period of time.
Parameter BC = Time data (0000H to FFFFH)
The actual wait time is BC/64 [second].
Return CF = 0: Normal termination
= 1: The execution of the routine was halted by the BREAK key.
Affected BC, flags
Register
BONOFF
Entry Address 01BDH
Function Enable or disable the beep.
Parameter Bit 0 of the content of MODEF (address F86BH)
= 1: Beep OFF
= 0: Beep ON
Return none
Affected none
Register

11A

3.11 TAPE RECORDER

3.11.1 PC-1600 Mode {(Mode 0)

[1] Cassette tape logical format

(1) Recording format of a file
{a) BASIC program {intermediate code format), Machine language program, RESERVE contents

[0CS

AAv4 A
Leader Space Space
(8 sec.) Header (2 sec.) Program data {4 sec.)
(b) BASIC program (ASCIli saved format), Text data (ASCI!)
AV4 A A4 A AYA A4
Leader Header Space ASCH data Space ASCll data Space ASCIl data Space
(8 sec.) (2 sec.) block 1 (4 sec.) block 2 {4 sec.) block n (4 sec.)
71
(c) Data (special format)
\v4 A-AV4 ASAVA A AV
Leader Space Space Space
(8 sec.) Header (2 sec) Data 1 status (8 sec.) Data 1 {4 sec.) Data 2 status
A-AV4 /1l k' AV ¥\ ¥
Space Data 2 Data n status 2PEeE Data n SpEce
{8 sec.) (8 sec.) {4 sec.)
l

*¥ . The cassette tape stops.
V: The cassetie tape starts.

117

gL

L

0000O0OO0CO0COCOODOOOOOOT”TI1T11T1T1T1T1T1T 111111112 2
01 2 3 456789 ABCDTETFU O 12 3456788 ABCDETFO F
0 £l g
DiL{HlLfniLH HEEE Reserved {all 00H)
H b3 s
“) N
T File name Extension T T T—; e Machine language program ... Execution
start bank number after loaded.
\N.ﬁ —] e Other than machine language program
File name {o Up to 16 characters. Howaver, it is up . OOH
to 11 characters (the file name is up to
8 characters and the extension is up
to 3 characters) when handling {sav- ® Machine language program ... Load start)
MODE 1 file format’ i’EQA(’S' Ioadi:g)fal ﬁg’ by speci(fying bank number
° . : g :" in the file descriptor (e.g., .
,2;2;“:;: e SAVE “CAS:", or PRINT# device No.) ° ?‘gg;""’" machine language program
® 02H: Intermedi- | | ® The file name is left-justified and the
ate-coded BASIC remaining space Is filled with 20H
program L codes.] @ Machine language, Intermediate-coded
@ 04H: ASCIl BASIC program, RESERVE contents ...
o 08H: Data —_—

[@ Machine language, Intermediate-coded BASIC program,
RESERVE contents ... Data size lower 16 bits Afremnac]
o Data, ASCIi file ... 00H

[e Machine language program ... Load start address] "

® Other than machine language program ... undefined

@ Machine language program ... Execution start address
after loaded. {If this is FFFFH and the content of the
header 1FH is FFH, no execution address is assumed.)

e Other than machine language program ... 0000H

e]

Date and time of file
creation

Tenth
digit

Unit
digit

Range!

Month

0

01~12)

Day

0~3

01~31

Hour

0~2

00~2

Minuto

0~5

00~59]

L MODE 2 file format”

Data size upper 8 bits
@ Data, ASCH file ... 00H

® 00H: Machine language

® 01H: Intermediate-coded BASIC program
® 02H: RESERVE contents

® C4H: ASCH

ainjonus JepesH (2)

S0t

10CS

i Recording format
MODE 1 MODE2 | File type ite‘f,e(‘j fagaote .

format of a file".)
01H 00H Machine language program (a)
02H 01H BASIC program {intermediate code format) (a)
02H 02H RESERVE contents {internal code format) (a)
04H | 04H BASIC program (ASCIl format) (b)
04H 04H Data (ASCII format) {b)
08H 1 04H Data (special format) (c)

{3) Data block structure {See item (1) above.)
(a) BASIC program (intermediate-coded), Machine language program, RESERVE contents

Program data

n bytes = Data size

{b) BASIC program (ASCI! saved), Data (ASCIl format)

ASCIl data block 1 Biock 2 - Block n
EOF
ASCIl code Space ASCIll code ASCl! code code g
1/
256 bytes 256 bytes 256 bytes

® ASCIl data are handled in blocks of 256 bytes.

® The end of a file is detected when an EOF code (1AH) is encountered.

e If the last block (the block that includes an EOF code) is less than 256 bytes, meaningless
data are automatically added at the end of the data (the part indicated by * in the above
figure) to make it as a complete 256-byte block.

{c} Data (Special format) '

e Status part

The status part consists of 5 bytes and has the following structure.

10CS

————— e — e

a

DLE
|
—

Number of two-dimensional array elements minus 1
(This is 00H for one-dimensional array variables or non-array variables.)

Number of one-dimensional array elements minus 1
{This is 00H for non-array variables.)

¥ _Data size of one array element plus 3

® String array ... Number of characters {in bytes) in the array elements
o Numeric array ... 88H

|

|

bit7 bito

array elements

—————— ——
Number of bytes in the
{50H max.)

1... Numeric
0 ... String

Value of a, b, ¢, and d (hex]}
- Variable type Data;size {bytes)
a b c d
0008 00 60] 88 Numeric data (e.g., A, B} 8
0013 00 00 10 String data {e.g., A$, B$) 16
00D3 19 00 88 @ (x) 208
01A3 19 00 10 @$ (x) 416
a b c 88 Numeric array {b+1)X{C+1)%8
a b c d String array {(b+1)X(C+1)xd
@ Data part

[2] Cassetie tape physical format

{1) Bit structure

One bit (SHORT...expresses the value “0”; LONG ...

following pulses.

/L

The data part contains the contents of one element of an array variable in the internal code
format {see section 4.1.3).

8 == ol

(& C B]

Data size {a minus 3}

e

190

expresses the value “1”) consists of the

Pulse width {us)

163

164

409

408

#These pulse widths are the default values. They can be changed by changing the contents of the
cassette tape work area. (See section 3.11.3 for details.)
(2) Header structure

%

i
Le) SHORT LONG SHORT | LONG Header w | L | Lone "
EqRer {10000 bits) {40 bits) | (40 bits) | (1 bit) {48 bytes) {1 bit) pace
1/
Checksum
(2 bytes)

(3) Data block structure

SHORT LONG SHORT LONG LONG
11000 bits bits 20 bits it 1 bit
{) (20) (20 bits) {1 bit) Data block H L (1 bit) Space
Checksum
{2 bytes)

*in the double write mode, the follow-
ing contents are added at the posi-
tion indicated by V.

In principle, however, the PC-1600
does not use the double write mode.

SHORT LONG
(256 bits) Data {header or data block) H L (1 bit)
Checksum
(2 bytes])

{4) Byte structure

LONG | bit bit
(1biy} 7 6 5 4 3 2 1 0 h

—_

1 byte

(5) Checksum structure
The checksum is the value of the lower 2 bytes of the sum of all LONG bits appearing in the data
excluding the first LONG bit at the beginning of each byte within the header or data block.

44

10CS

3.11.2 PC-1500/PC-1500A Mode (Mode 1)

[1] Cassette tape logical format
{1} Recording format of a file
{a) BASIC program, Machine language program, RESERVE contents

A 4
Leader GAP (1)
Data block
(8.01 sec.) Header (260 ms) ata bloc
(b) Data
Leader GAP (1) Data 1 GAP (1) GAP {1) Data 2
(8.01 sec.) L (1026 ms) status (252 ms) Data 't {1026 ms) status
/1 A 4
GAP (1) GAP (1) Data n GAP (1)
{252 ms) Bata 2 S (1026 ms} | status (252 ms) Data n
7/
*¥: The cassette tape stops.
V: The cassette tape starts.
® : Leader/GAP is Stop bit “1”. (see Bit structure)
(2) Header structure
0 0000DO0OOOOCODOODOOGCO T 1T1T1T1T1T1T1T1T1T1T11 111
0 1t 2 3 45 6788 ABCDEFUO01234567 89 ABCDETF
0jojojojojojolofo
> ojofojo|ofolojo|o
HIHIHIH{H|{H{HIH{H{HL|H]L 0L
= o e
File name
o Left-justified : Machine lan . 3
N .) guage program ... Execution
¢ A space, if any, is filled with 00H codes. start address after loaded. (If this is FFFFH,
o If a file name is omitted, the area is filled with 00H codes. no execution address is assumed.)
@ Other than machine language program ... (
0000H])
File mode '
® 00H: Machine language © Data file ... 0000H
© 01H: BASIC program -———3~1 ® Other than data file ... Data size (b
® 02H: RESERVE contents minus 1 1Hysee)
® 04H: Data
oF
® Machine language program ... Load start
address
e e R
© Other than machine language program ...
undefined
1 11l Continue
flol1]2]a|als]|e]7
HIHIH|IHIH|[H]|H|H
" Header Mark
4 bit Data

190

(3) Data block structure (See item (1) above.)
(a) BASIC program, Machine language program, RESERVE contents

Program data

n bytes = Data size

{b) Data
& Status part
The status part consists of 6 bytes and has the following structure.

a b c d
L bit7 bit0
® String array ... Number of characters (in bytes) in the array elements .
® Numeric array ... 88H] se——]
. _‘_—'V—_/
Number of two-dimensional array elements minus 1 f
1 (This is 00H for one-dimensional array variables or non-array variables.) } [L"r‘:;b;;::elztses in the |
{50H max.)]
| Number of one-di ional a | ts minus 1 i
| oo o ey sy v (i temere)
:{ Data size of one array element plus 3}
Value of a, b, ¢, and d {hex)}
Variable type Data size (bytes)
a b c d
000B 00 00 88 Numeric data (e.g., A, B) 8
0013 00 00 10 String data (e.g., A$, B$) 16
00D3 19 00 88 @ (%) 208
01A3 19 00 10 @$ (x) 416
a b c 88 Numeric array (b+1)%{C+1)x8
a b c d String array (b+1)%(C+1)%d
e Data part
The data part contains the contents of one element of an array variable in the internal code
format.

(For details of the internal code format, see section 4.1.3.In section 4.1.3, it is explained that
the MSB of the string starting address is inverted. However, this does not apply here.)

\ Data size (a minus 3)

1912

10CS

[2] Cassette tape physical format

(1) Bit structure
One bit (value “0” or “1”) consists of the following pulses.

1 {2.54 kHz)
|: g
0: (1.27 kHz)
I >
(2) Byte structure
T 1T 1 | R
Start 2 s s g Start - 5 % 2
it b7‘t b: tgt b: Stop bit “1" bit tg' bz’t "1“ %‘t Stop bit “1”
o [° I T

(3) Header structure

® 1260 ms for data file Data

Leader
(8.01 sec.) Header ; EhEsksu: | Specs {0 260 ms for other than data file

The checksum is the value of the lower 2 bytes of the sum of all
———3 hytes appearing in the data excluding the first digit of the header
{code Ay).

{(4) Data block structure
(a) BASIC program, Machine language program, RESERVE contents

/L
80 bytes Check- 80 bytes Check- i ast data Check- Space 55H
of data sum of data sum block sum (262 ms)
7/
L’File End Code
Lower 2 bytes of the sum of all 80 bytes Lower 2 bytes of the sum of all 80 bytes of data of the
of data last data block
{if the last data block is less than 80 bytes, the checksum
is calculated to that number of data bytes.)
(b) Data
/1l
Checksum
Status part Space Space Space Last data Space
{5 bytes) °f;::”s (252ms) | Dat@block | oosms) | Datablock2 | ioos s block (262ms) | H
1/ ¥
File End
Code
L—Sum {2 bytes) of the 5 bytes of the status part

194

|0CS

3.11.3 Work Area used for Cassette Tape Recorder

Name Address Contents
Specify the “high” period of the SHORT (0} puise in the PC-1600
mode.
SHORT HIGH FIS7H The default is 30. ey
(See note 1)
Specify the “low” period of the SHORT (0) pulse in the PC-1600
mode.
SHORT LOW F198H The default is 23. H
(See note 1)
Specify the “high”.period of the LONG (1) pulse in the PC-1600
mode. :
LONG HIGH I The default is 79. om— |
(See note 1)
Specify the “low” period of the LONG(1) pulsé in the PC-1600
mode.
LONG LOW F19AH The default is 71. —I::::’_
(See note 1)
CHECK SUM F19B~CH Checksum calculation register
Specify the length of the leader (no signal) part of the header.
INFORMATION 1 F19DH The default is 80.
(See note 2)
Specify the length of the trailer (no signal) part of the header.
INPETMATION | pqpely The default is 20.
(See note 2)
A header gap parameter which specifies the number of con-
ISNHF(());!_:_VI;\TION F19F~AOH tinuous SHORT pulses for the first time.
The default is 10000.
A header gap parameter which specifies the number of con-
{_%F'\?g'}AAT'ON F1A1TH tinuous LONG pulses for the first time.
The default is 40.
A header gap parameter which specifies the number of con-
ISNHFgF?.lM;‘T'ON F1A2H tinuous SHORT pulses for the second time.
' The default is 40.
DATA A data block gap parameter which specifies the number of
SHORT 1 F1A3~4H continuous SHORT pulses for the first time.
The default is 11000.
A data block gap parameter which specifies the number of
DATA LONG 1 F1ABH continuous LONG pulses for the first time.
The default is 20.
DATA A data block gap parameter which specifies the number of
SHORT 2 F1A6H continuous SHORT pulses for the second time.
The default is 20.
Specify the length of the trailer {no signal) part of a data block.
DATA TRAILER F1A7H The default is 40.
(See note 2)
Specifythe threshold level to be used for judgment whether a bit
RPOINT F1ASH data read is a LONG or a SHORT pulse. If the bit data is less than

this threshold level, it is judged as a SHORT pulse.
The default is 22.

198

l0CS

3.11.3 Work Area used for Cassette Tape Recorder

Name Address Contents
Specify the “high” period of the SHORT (0) pulse in the PC-1600
mode.
SHORT HIGH F197H The default is 30. _J:L
(See note 1)
Specify the “low"” period of the SHORT (0) pulse in the PC-1600
mode.
SHORT LOW F198H The default is 23. T—
{See note 1)
Specify the “high” period of the LONG (1) pulse in the PC-1600
mode.
LONG HIGH F193H The default is 79. emmmm—
{See note 1)
Specify the “low” period of the LONG(1) pulse in the PC-1600
mode.
LONG LOW F19AH The default is 71. _l::r
e {See note 1)
CHECK SUM F19B~CH Checksum calculation register
Specify the length of the leader (no signal) part of the header.
INFORMATION | F19DH The default is 80.
L (See note 2)
Specify the length of the trailer (no signal) part of the header.
INFOTRRATION | F19EH The default is 20.
{See note 2)
A header gap parameter which specifies the number of con-
ISNHFOOF?.IMf‘TION F19F~AQH tinuous SHORT pulses for the first time.
The default is 10000.
A header gap parameter which specifies the number of con-
L%FSSYATION F1A1H tinuous LONG pulses for the first time.
The default is 40.
A header gap parameter which specifies the number of con-
'SNHFg;.:.szTION F1A2H tinuous SHORT pulses for the second time.
The default is 40.
DATA A data block gap parameter which specifies the number of
SHORT 1 F1A3~4H continuous SHORT pulses for the first time.
The default is 11000.
A data block gap parameter which specifies the number of
DATA LONG 1 F1A5H continuous LONG pulses for the first time.
The default is 20.
DATA A data block gap parameter which specifies the number of
SHORT 2 F1A6H continuous SHORT pulses for the second time.
The default is 20.
Specify the length of the trailer (no signal) part of a data block.
DATA TRAILER F1A7H The default is 40.
{See note 2)
Specifythe threshold level to be used for judgment whether a bit
data read is a LONG or a SHORT pulse. If the bit data is less than
RPOINT F1ASH this threshold level, it is judged as a SHORT pulse.
The default is 22.

125

3.12 MEMORY
3.12.1 Slots and Memory Modules

These modules
can be installed
only in slot 1 (S1).

These modules
can be installed

in either slot 1 (S1)
orslot 2 {S2).

10CS

Bank 0 Bank 1 Bank 2 Bank 3
S1 S2

8000
Co00

Main)

memory, Slot 1 (S1) is allocated to the memory locations of 8000H to BFFFH of bank 0

and 8000H to BFFFH of bank 1.

FFFF

8000

7

CE-151 ,,/552

EEE!
rrF

A000

A000 /
BFFF /’///
8000 77
CE-161 z/i::;;;:::::
BFFF //
8000
CE-1600M
BFFF

Slot 2 {S2) is allocated to the memory locations of 8000H to BFFFH of bank 2
and 8000H to BFFFH of bank 3.

Each module uses a part of or the entire memory locations allocated to that
slot as shown in the figures. Those memory Igcations of the shaded part are
not used.

Note: Even when a memory module is installed in S1 or S2, if it is used as an
extension memory, it is referred to as S0.

10CS

3.12.2 Work Area used for Memory

(1) Work area used to specify the order in which a BASIC program is loaded into banks.

Name Address Contents
SOMTb FO2AH First bank of SO
S1MTb FO16H First bank of the program module in S1
S1MBb FO18H Last bank of the program module in S1
S2MTb FO20H First bank of the program module in 52
S2MBb FO22H Last bank of the program module in S2
Name Address

ADTBL+1 F1D6H @

ADTBL+2 F1D7H

ADTBL+3 F1D8H

ADTBL+4 F1D9H

ADTBL+5 F1DAH

The bank information is stored in bits 4 and 5 of each of ADTBL+1 to ADTBL+5. If the value of bits
4 and 5 is 00H, this means “unused”.
(Example) 01H ... Indicate bank 0.

32H ... Indicate bank 3.

00H ... unused ,
If SOMTb, S1MTb or S2MTb contains a value between 1 to 5, the bank information is stored in the
memory locations starting from ADTBL plus that value. For instance, if the value is 5, the bank
information is in locations starting from ADTBL+5. If the value is other than 1 to 5, this means
“unused”,
Example 1: When installing CE-159 in S1 and CE-1600M in S2 and using them as an extension

memory

Bank 0 Bank1 Bank2 Bank 3
s1 s2
A0DO // CE-1600M
CE-159
€000 2

Main
memory

FFFF

SOMTb
S1MTb
S1MBb
S2MTb
S2MBb

ADTBL+1
ADTBL+2
ADTBL+3
ADTBL+4
ADTBL+5

03H
FEH }

?
FEH }
?

00H
00H
01H
22H
32H

The bank information is in the locations from ADTBL+3.
S1 is not used as a program module.
(It is used as an extension memory.}
S2 is not used as a program module.
(it is used as an extension memory.}

Unused
Unused
Bank 0
Bank 2
Bank 3

in this example, the program is loaded into bank 0, bank 2, bank 3, and the main memory in that order.

Bank 0

Bank 1 Bank 2 Bank 3

8000

A000

Sl

C000

FFFF

Example 2: When installing CE-1600M in S1 and CE-161 in S2 and using them as an program

module

Bank 0 Bank 1 Bank 2 Bank 3
8000 7/
CE-1600M CE-161 /
€000 ,/(::2
Main
memory

FFFF)

gOMTb 05H S0 is from ADTBL+5.

™

il 92} 1 s from ADTBL+2 t0 ADTBL+3,

S2MTb 04H .

S2MBb 04H } S2is ADTBL+4.

ADTBL+1 00H Unused

ADTBL+2 81H Bank0

ADTBL+3 11H Bank 1

ADTBL+4 A2H Bank2

ADTBL+5 00H Unused

Bank 0 Bank 1 Bank 2 Bank 3
8000
€000 N
\ S2 program loading order
S1 program loading order

FFFF S0 program loading order

ERatal

10CS

3.12.3 10CS Routines for Memory Control

This section describes the I0CS routines to be used for memory control. The table below lists the
names, entry addresses, and functions of these routines.

Name Entry address Function
MEMORYCHK 018DH Check whether or not memory exists at a specified location (bank and
address).

BANKSET 0190H Change the bank of a specified page.
BANKREAD 0193H Read the bank number of a specified page.
SLOT1MAP 0196H Set the mapping of slot 1.

SLOT2MAP 0198H Set the mapping of slot 2.

BANKJUMP 019CH Inter-bank jump

BANKCALL 019FH Inter-bank call

BANKCALLZ2 0020H Inter-bank call using RST 20H
F65C R R
C’uf‘(ég‘\\,ﬁ ekl
e A (ve) se00
?wb“'\ QF o Faz\z Q)CA’M o
op go0 - A

N [\
o @7‘33)1"& Is A , ’%ML
¢

Pol 0 ¢ ca €7 .8
tee. @ s LFEE

40N

MEMORYCHK

Entry Address

018DH
Function Check whether or not memory exists at a specified location (bank and address).
Parameter D = Bank number (00H to 07H)
E = Address: Upper 5 bits (40H to B8H)
The other bits are all “0”.
Return CF = 1: No memory exists at the specified location.
CF=0: Bit0of Aregister = 1 .uimusnmmsomssensnsimssnisresssessavismsasss Memory exists.
Bit 1 of Aregister = 1 ... The memory is ROM.
= 0 srrevrrerrrrrsressreenreeeneesserssnsenanes The memory is RAM.
Affected Register AF
BANKSET
Entry Address 0190H
Function Change the bank number of the page specified by B register to the new bank
number specified by A register.
Parameter B = Page number (01H to 03H)
A = Bank number (00H to 07H)
Return CF = 1: An invalid page number was specified.
Affected Register AF
Bank No,
Addions 1 2 3 4 5 6 7
0000H
4000H
1
Page No. 8000H

2
COO0H

131

10CS

BANKREAD

Entry Address 0193H

Function Read the banknumber of the page specified by B register.
Parameter B = Page number (01H to 03H)
Return A = Bank number (00H to 07H)

Affected Register AF, B

Bank No,

Address 1 2 3 4 5 6 7
0000H

4000H
1

Page No. 8000H

2
CO000H

3

SLOT1MAP

Entry Address 0196H

Function Specify to which bank and page the last half 16 KB of slot 1 is mapped.
Parameter A = 00H : The last half 16 KB of slot 1 is mapped to bank 1, page 2.
A = 01H : The last half 16 KB of slot 1 is mapped to bank 1, page 2 and bank 1,
page 1.

The following shows the mapping diagrams of the above two cases. In the
diagram, “«” and “B” represent the first half 16 KB and the last half 16 KB of slot
1, respectively.

Bank
0 1 2 3 4 5 6 7 Address
0000H

4000H
8000H
CO00H

A=0
Page

w N -2 o
R
™

Address
0000H
4000H

8000H
CO00H

A=1
Page

[I -~
R

Return none

Affected Register AF

SLOT2MAP

10CS

Entry Address
Function
Parameter
A= 02H
0
1
Page 2

3

Return

Affected Register

0199H

Specify to which banks and pages the first half 16 KB and the last half 16 KB of
slot 1 are mapped.

A = 00H : The first half 16 KB of slot 2 is mapped to bank 2, page 2, and the last
half 16 KB is mapped to bank 3, page 2.

A = 01H : The first half 16 KB of slot 2 is also mapped to bank 1, page 0.

A = 02H : The first half 16 KB of slot 2 is mapped to bank 1, page 1, and the last
half 16 KB is mapped to bank 1, page 0. However, if bank 1, page 1 is
used for slot 1, the first half 16 KB of slot 2 is not mapped to that
location. ’

The following shows the mapping diagrams of the above three cases. In the

diagram, “«” and “B” represent the first half 16 KB and thelast half 16 KB of slot

2, respectively.

Bank

0 1 2 3 4 5 g 7 Address
0000H
0
3 4000H
A =00H) : 8000H
Page 4
d CO00H
3
Bank
0 1 2 3 4 5 g 7 Address
0000H
] o
A=01H i 4000H
8000H
Page 2 « | B
Co00H
3
If bank 1, page 1 is not used for slot 1 If bank 1, page 1 is used for slot 1
Bank Bank
0 1 2 3 4 5 g 7 Address 8 1 2 3 4 5 g gzhddes
0000H 0000H
B] B
4000H 4000H
« 1
8000H Page H
< | p g 5 - 8000!
COO0H CO00H
3
none
AF

[0CS

BANKJUMP

Entry Address 019CH

Function Jump to an address (specified by HL' register) of a bank (specified by“‘A' register).
Parameter A’ = Bank number

HL" = Address
Return Control does not return because this is a jump operation.

Affected Register AF’, BC’, DE’, HL'

BANKCALL

Entry Address 019FH

Function Call an address (specified by HL’ register) of a bank (specified by A’ register).

Parameter A’ = Bank number
HL’ = Address

Return none

Affected Register AF’, BC', DE’, HL'

BANKCALL2

Entry Address 20H (To call this routine, use the format: RST 20H.)

Function Same as BANKCALL routine except for the call format
Parameter Write 3 bytes of data (bank number and address) immediately after the RST 20H
instruction.
Li High
E7H e | oys
RST20H Bank number Address
©~7)

124

C)

3.13 MEMORY MODULE
3.13.1 Location of Memory Module

A memory module is a ROM or RAM module of a minimum of 4 KB and is used by setting it in slot 1
or 2. The following describes the relationship between the memory capacities, the slot numbers, and

the memory locations.

Bank 0 1 2 3 4 5 6 7
0000

4000

8000

Co00

FFFF

(1} Memory module of 16 KB or less
e Slot 1: The memory module is mapped to location A.
e Slot 2: The memory module is mapped to location C.
(2) Memory module of 32 KB
e Slot 1: The memory module is mapped to locations A and B. .
e Slot 2: The memory module is mapped to locations C and D.
(3) Memory module of 48 KB or more
e Slot 1: Cannot be used.
e Slot 2: The 32 KB part of the memory module is mapped to locations C and D, and the rest of

the memory module can be mapped to locations C and D through the bank switching.

3.13.2 Type of Memory Module
The memory modules are classified into four types depending on how they are used.
(1) Extension module (RAM module only)
This module is used to extend the main memory.
(2) Program module (ROM or RAM module)
This module is used to store a program.
{3) File module (ROM or RAM module)
This module is used to save and load data, like a disk unit.
(4) System software module (ROM or RAM module)
This module is used to store a machine language program that can be automatically runat
power-on time.
The type of memory module is identified by the header data (the first 8 bytes of the module). f it is a
ROM module, it cannot be used as a different type of module (e.g., a ROM program module can be
used only as the program module,) however, a RAM module can be used as a different type of
module by specifying it by a BASIC command. For any type of module, only one header is placed in
location A or C (see the figure in section 3.13.1). ’

10GS

3.13.3 Header Structure of Memory Module

(1) Header of system software module

+0

+1

+2

+3

+4

+5

+6

+ 7

+8

55H

00H

§——————— Must always be 00H.

Execution address (Low byte)

««——— System software entry address

Execution address (High byte)

00H

00H

OOH

Unused

82H

System software area

136

BASIC *
INTERPRETER

Lower 4 bits

BASIC INTERPRETER

4.1 FUNCTIONS HANDLING AND INTERNAL EXPRESSION

4.1.1 Intermediate Codes of Functions
The reserved words of BASIC are developed to 2-byte intermediate codes (internal codes) in memory.
The 2-byte intermediate code of a BASIC function has a value between 50H to 7FH in its low byte,
depending on the kind of function. The functions are classified as follows:

50H to 51H: Operators

52H to 6FH: System variables

60H to 7FH: Functions

The intermediate code table of the functions is given below.

High byte: E8H

Low byte Upper 4 bits
0 1 2 3 4 5 6 7 8 9 A | B cC | D E F

—

DEVS$
COM$

INSTAT
* IRINKEYS

MMM O O0O|w|P|lojlwiNjojlon|bdDlw|N

100

Lower 4 bits

Lower 4 bits

High byte: FOH

Low byte Upper 4 bits
0 5 6 7

0

1 SPACES

2 ERN

3 ERL

4

5

6

7

8

9

A

B

Cc

D

E

F
High byte: F1H
Low byte Upper 4 bits

0 5 6 7

0 AND | ASC | ABS
1 OR |STR$| INT
2 VAL |RIGHT$
3 CHR$ | ASN
4 LEN | ACS
5 DEG | ATN
6 DMS | LN
7 STATUS| LOG
8 l MEM |POINT| EXP
9 SGN
A LEFTS
B TIME | SOR | MID$
c INKEY$ RND
D Pt | NOT | SIN
E XPEEK# | COS
F XPEEK] TAN

139

Lower 4 bits

BASIC INTERPRETER

High byte: F2H
Low byte Upper 4 bits
0 1 2 3 4 5 6 7 8 9 A B G D E F

0 MOD

1

2

3 HEX$

4 AIN

5

6

7

8

9 DATES$ |

A TIMES

B

C INSTR

D

E ALARMS

F WAKE$

4.1.2 Arithmetic Registers

When you want to use an IOCS routine to perform an arithmetic operation, you must prepare in
advance necessary arguments of numeric values or strings in the arithmetic registers provided in the
BASIC work area. There are seven arithmetic registers: X, Z, Y, U, V, W, and S. Each register uses 8
bytes of space in the work area. An argument can be set into an arithmetic register (i.e., into the
memory location allocated to a particular arithmetic register) in the format described in section 4.1.3.

The following shows the arithmetic registers and their memory locations.

Register Address
X FAOOH ~ FAO7H
z FAO8H ~ FAOFH
Y FA10H ~ FA17H
U FA18H ~ FA1FH
Y FA20H ~ FA27H
w FA28H ~ FA2FH
S FA30H ~ FA37H

(These are the addresses viewed from SC-7852 {Z80).)

14N

BASIC INTERPRETER

4.1.3 Internal Expression of Numeric Values and Strings

(1)

(2)

Decimal (BCD) expression of a numeric value
A numeric value is expressed in. an 8-byte format which consists of the exponential part, the

mantissa sign, and the mantissa part. This expression format can express a value between
—9.999999999 x 10 and 9.999999999 X 10%°,

Lower address Higher address
Exponential ‘Mantissa Mantissa part 00H
part sign

Exponential part: Expressed in one binary byte. {A negative value is expressed as a comple-’

ment.)
Mantissa sign: O0H ... represents the plus sign.
80H ... represents the minus sign.
Mantissa part: Expressed in BCD.

[Example]
e When setting 123 (or 1.23 x 10?) in X register

FAOQ FAQ7

02H 00H 12H 30H 00H 00H O0H 00H

e When setting —0.0123 (or —1.23 X 107%) in Y register

FA10 FA17

FEH 80H 12H 30H 00H 00H 00H 00H

Binary expression of a numeric value v
A numeric value is expressed in the following 8-byte format (although 5 bytes of it are not used.)
This expression format can express a value between —32768 and 32767.

Lower Higher
address address
* * * * Hiéher Lower *

Don't care B2H Binary number Don’t care

(A negative is expressed
as a complement.)

BASIC INTERPRETER

[Example]
@ When setting 123 (or 007BH) in X register

FAQOH FAQ7H
GOH 00H 00H 00H B2H 00H 7BH 00H
® When setting -123 (or FF85H) in Y register
FA10H FA17H
00H 00H 00H 00X B2H FFH 85H OOH

{3) Internal expression of a string
A string of characters are represented by the string information that specifies the memory

locations where the actual character string data are stored. This string information is expressed in
the following 8-byte format {(although its lower 4 bytes are not used.)

String length: 01H to 50H
* * * * DOH ADDH ADDL LENGTH String starting address: 000H to FFFFH

Don't care DOH Starting address of
the memory locations
where the character string dataare stored

String length
{Number of characters)

{The MSB of ADDH (address high byte) is inverted.
For instance, if the starting address is FB10H, then 7BH and
10H should be set in ADDH and ADDL, respectively.}

[Example]
When the character string “PC-1600" is in the string buffer (FB10H to FB5FH) and you want to set

the string information in X register

DOH 78H 10H 07H
B e
Don‘t care
FB10H FB16H
50H 43H 2DH 31H 36H 30H 30H

149

BASIC INTERPRETER

4.1.4 Function Operation Subroutines

(1} Numericfunctions
{a) One-variable functions (in the case of a function which accepts only one numeric value as the
argument)
1. Set the argument (in BCD expression) in X register.
2, Set the intermediate code of the desired function in DE register.
3. Set “01H" in address F88CH (the work area that specifies the number of arguments).
4. Call 0202H (with the CALL instruction of Z80).
When the function subroutine is completed properly, CF is set to “0” and the result is stored in X
register. If the subroutine has resulted in an error, CF is set to “1” and the error code (same as
used for BASIC) is stored in A register.
Affected registers: HL, DE, BC, AF, AF’
The PC-1600 has the foliowing one-variable functions.

Square root SAR X — X
LNX - X
Logarithm
LOG X = X
Exponent EXP X — X
SIN X — X
Trigonometric
functions COS X —+ X
TAN X — X
ASN X — X
Inverse
trigonometric ACS X — X
functions
ATN X — X
DMS (degree, DEG X — X
minute, second)
conversion DMS X — X
Absolute ABS X — X
Sign SGN X —» X
Integer INT X — X
Negate NOT X — X
Random number RND X — X
XPEEK (n) X — X
Machine language
PEEK X — X
Machine language STATUS X — X
Dot pattern POINT X — X

BASIC INTERPRETER

{b) Two-variable functions
1. Set the arguments (in BCD expression) in X and Y registers. The operand should be set in X

register. (For instance, to compute 10 - 9, set “10” in X and “9” in Y.)
2. Set “02H” in address F88CH (the work area that specifies the number of arguments).
3. Call the entry address of the desired function.

Function Entry address

+ 021AH

— 021DH

X 0220H

/ 0223H

A 01F3H
AND 01F6H
OR 01F9H

When the function subroutine is completed properly, CF is set to “0” and the result is stored in X
register. If the subroutine has resulted in an error, CF is set to “1” and the error code (same as
used for BASIC) is stored in A register.
Affected registers: HL, DE, BC, AF, AF
{c) Relational operations -
1. Set the arguments (in BCD expression) in X and Y registers. Theoperand (the value to be
compared) should be set in X register. (For instance, to compute 10 < 9, set “10” in X and "9”

inY.
2. Set ”)80H" in D register and set the internal code of the desired function (relational operator) in
E register.
Operator |Internal code (to be set in E)
< > 0cH
< 01H
> 02H
= 04H
< = O5H
> = 06H

3. Set “02H" in address F88CH.

4. Call 01FCH.

If the comparison is true, “1” is stored in Xregister. If it is false, “0” is stored.
Affected registers: HL, DE, BC, AF, AF'

(2)
{a)

(b)

{c)

BASIC INTERPRETER

String functions
One-variabie function (in the case of a function which accepts only one numeric value as the

argument)

1. Set the argument {in either BCD or binary expression) in X register.

2. Set the intermediate code of the desired function in DE register.

3. Set “01H” in address F88CH and “10H" in address F894H (the string buffer pointer).

4, Call 0202H.
When the function subroutine is completed properly, CF is set to “0” and the result (the string

information expressed in the following internal format) is stored in X register.

X register

FAGO FAQ4 FAOS FAQ6 FAQ7

DOH High byte | Low byte [String length
e

Starting address of the memory locations in which the resuitant character
data are stored .
The MSB of the high byte of the starting address is inverted.
(Example) If the following result is storad in X register:

FAO4H = DOH

FAO5H = 7BH (interpreted as FBH)

FAQ6H = 10H

FAO7H = 10H
this string information indicates a string of 16 (=10H) characters stored in
the memory locations starting from FB10H.

The PC-1600 has the only one string function of this kind: STR$.

Affected registers: HL, DE, BC, AF, AF’

One-variable functions (in the case of a function which accepts only one string data item as the

argument and gives a numeric value as the result.)

1. Set the argument {string information) in X register. The actual string data must be prepared in
the string buffer {the area starting from FB10H).

2, Set the intermediate code of the desired function in DE register.

3. Set “01H" in address F88CH.

4. Call 0202H {with the CALL instruction of Z80).

When the function subroutine is completed properly, CF is set to “0” and the result (expressed in

either BCD or binary expression) is stored in X register. If the subroutine has resulted in an error,

CF is set to “1" and the error code (same as used for BASIC) is stored in A register.

Affected registers: HL, DE, BC, AF, AF’

The PC-1600 has three functions of this kind: VAL, ASC and LEN.

Two-variable functions ... RIGHT$(string, numeric value) and LEFT$(string, numeric value)

1. Check whether there is a free space of 8 bytes in the BASIC stack area (FA38H to FAFFH). This:
function subroutine can be executed if the following relation is satisfied:

{Content of F830H) < (Content of F891H) — 8
2. Set the string information into addresses from {content of F890H)+4 to (content of F8IOH)+7:

BASIC INTERPRETER

Address Data

(Content of F890H)+4 DOH

Starting address of the memory locations where the actual

(Content of F830H)+5 string data are stored (High byte)

Starting address of the memory locations where the actual

(Gontent of F880H)+6 string data are stored {Low byte)

(Content of F890H)+7 | String length

and set the actual string data in the string buffer (FB10H to FB5FH). When setting the high byte
of the string starting address into address (content of F890H)+5, invert the MSB of the high

byte.
For example, when a string of eight characters are already stored in the string buffer starting

from its top, set the following string information:

Address Data
{Content of F830H)+4 DOH
(Content of F890H)}+5 78H
{Content of FB90H)+6 10H
(Content of F890H)+7 08H

3. Set “(content of F890H)+8" into address F892H (the data pointer).
4. Set the numeric argument (in either BCD or binary expression) in X register.
5. Set the intermediate code of the desired function in DE register.
6. Call 0202H (with CALL instruction of Z80).
When the function subroutine is completed properly, CF is set to “0” and the result (the string
information expressed in the internal format) is stored in X register. The actual resultant character
data are stored in the string buffer.
If the subroutine has resulted in an error, CF is set to “1” and the error code is stored in A register.
Affected registers: HL, DE, BC, AF, AF
{(d) Three-variable function ... MiD$(string, numeric1, numeric2)
1. Check whether there is a free space of 16 byies in the BASIC stack area (FA38H to FAFFH). This
function subroutine can be executed if the following relation is satisfied:
{Content of FBY0H) < (Content of FB91H)} — 16
2. Set the string information into addresses from {content of F890H)+4 to (content of F8I0H)+7:

Address Data

{Content of F80H)+4 DOH

Starting address of the memory locations where the actual

(Content of F830H)+5 string data are stored (High byte)

Starting address of the memory locations where the actual

(Content of F890H)+6 string data are stored {Low byte)

{Content of F890H)+7 | String length

14R

BASIU INIERPREIER

and set the actual string data in the string buffer (FB10H to FB5FH). When setting the high byte
of the string starting address intoaddress (content of F890H)+5, invert the MSB of the high
byte. :

For example, when a string of eight characters are already stored in the string buffer starting
from its top, set the following string information:

Address Data
{Content of F890H)-+4 DOH
{(Content of F890H)+5 7BH
(Content of F890H)+6 10H
{Content of FB90H)+7 08H

3. Set the third argument numeric2 (expressed in either BCD or binary expression) into addresses
from (content of F890H)+8 to (content of F890H)+15.

4. Set “{content of F890H)+16" into address F892H (the data pointer).

5. Set the second argument numerict (in either BCD or binary expression}in X register.

6. Set the intermediate code of the desired function (i.e., F17BH in the case of MID$ function) in
DE register.

7. Call 0202H (with CALL instruction of Z80).

When the function subroutine is completed properly, CF is set to “0” and the result (the string

information expressed in the internal format) is stored in X register. The actual resultant character

data are stored in the string buffer.

if the subroutine has resuited in an error, CF is set to “1” and the error code is stored in A register.

Affected registers: HL, DE, BC, AF, AF’

Relational operations (string1, operator, string2)

1. Set string1 and string2 in X and Y registers, respectively. These string arguments must be
expressed as the string information in the internal format.

2. Set the internal code of the desired function (relational operator) in DE register.
D = 80H

Operator Value to be set in E
<> DOH
< 01H
> 02H
= 04H

3. Call 01FFH (with CALL instruction of Z80).
If the comparison is true, “1” is stored in X register. If it is false, “0” is stored.
Affected registers: HL, DE, BC, AF, AF’

117

BASIC INTERPRETER

4.2 BASIC PROGRAM TEXT HANDLING

4.2.1 Subroutines for Numeric Value Handling

This section describes the subroutines to convert between the internal decimal (BCD) codes and the
internal binary codes. In the following explanations, the content of X register is an address for Z80,
specifying a memory location between FAOOH and FAO7H. For the format of data written in X register,
refer to section 4.1.3 “Internal Expression of Numeric Values and Strings”.

BCDBIN

Entry Address 0247H

Function Convert a numeric value (between 0 and 65535) expressed in an 8-byte BCD code
into a 2-byte binary code, with the fractional part rounded off.

Parameter X = Numeric value expressed in the BCD code

Return CF = 0: Normal termination

DE = Conversion result (If the result is “0”, then ZF is set to “1”.)
CF = 1: An error has occurred. (The error code is returned in A register.)
A = 13H: The value of the operand is out of the range.
A = 07H: The value of the operand is not expressed in the BCD code.

Affected Register AF, BC, DE, HL

BCBINS

Entry Address 0241H

Function Convert a numeric value (between —32768 and 32767) expressed in an 8-byte
BCD code into a 2-byte binary code (with a negative value expressed as a
complement). The fractional part is rounded off.

Parameter X = Numeric value expressed in the BCD code

Return CF = 0: Normal termination

Affected Register

DE = Conversion result (If the result is “0”, then ZF is set to “1".)
CF = 1: An error has occurred.

All registers

BASIU INTERPREITER

BiZBCD

Entry Address 024AH

fFunction Convert a numeric value expressed in a 2-byte binary code into a BCD code.
Parameter DE = Numeric vatue expressed in the binary code

Return X = Conversion result (BCD code)

Affected Register Ail registers

4.2.2 Subroutines for ASCIl Code Conversion

HTOA

¥

Entry Address 0283H
Function Convert a numeric value expressed in a 2-byte binary code into an ASCIl string.
Parameter HL = Binary number to be converted (0000H to FFFFH)

DE = Starting address of the memory locations to which the converted ASCIi

string is stored

Return DE = Address in which the last character is stored
B = Number of characters

&

Affected Register HL, DE, BC, IX, AF

Remarks {Exampie) When HL = 2374H (or 9076)

DE {when calling) g;g/::':g dr::;ning)

Lower address 4

39H 30H 37H 36H B = 04H (4 characters)

g 0 7 6

BASIC INTERPRETER

BCDASC

Entry Address

Function

Parameter

Return

Affected Register

0244H

Convert a numeric value expressed in a BCD code into an ASCII string. At the end
of the converted ASCH string is always added OOH. If the absolute value of the
exponent part is 10 or greater, the converted result is expressed in the
exponential notation (like 1.23x10'°). If it is less than 10, the converted result is
expressed in the fixed decimal notation (like 123). A plus sign, if any, is converted
to a space character. '

HL = Starting address of the memory locations in which the operand (a numeric
value expressed in a BCD code) is stored

DE = Starting address of the memory locations to which the converted ASCII
string is stored

The converted string is stored in the memory location specified by DE.

AF, BC, DE, HL, IX, tY, AF

4.2.3 Subroutines for Evaluation of Expressions

EXPRESS

Entry Address

Function

Parameter

Return

Affected Register

0274H

Evaluate the expression (in the intermediate code format) stored in the memory
location specified by HL register, and return the result (in the BCD format) into X
register.

HL = Text read address

CF = 0: Normal termination
X = Result

CF = 1: An error has occurred.
A = Error code

AF, BC, DE, HL, IX, IY

BASIU INTERPRETER

EXPREX

Entry Address 0277H

Function Same function as EXPRES, except that this routine does not result in an error
even if the expression to be evaluated does not have a left parenthesis which
should correspond to the right-most parenthesis.

Parameter HL = Text read address

Return CF = 0: Normal termination

Affected Register

SUSING

X = Resuit
CF = 1: An error has occurred.
A = Error code

AF, BC, DE, HL, IX, 1Y

Entry Address

Function

Parameter

Return

Affected Register

0298H

Interpret the contents of the memory locations whose starting address is
specified by HL register as the USING format data, and store the format data in
the work area.

HL = Starting address of the memory locations in which the USING format data
are stored

CF = 0: Normal termination
HL = (Last address of the memory locations where the USING format
data are stored) + 1
CF = 1: An error has occurred.
{Exampile)
- - - - USING “### ##",A----

The starting address of the When returning from the routine,
USING format data which HL register specifies the address of this point.
should be specified by HL register

AF, HL

BASIC INTERPRETER

USGCNT

Entry Address

Function

Parameter

Return

Affected Register

029EH

Convert the numeric value (in the internal format) in X register into the ASCI
string formatted according to the USING format data given by SUSING routine,
and store the ASCIl codes into Y, U, V, W and S registers (i.e., locations from
FA10H to FA37H).

If no USING format data has been given, the numeric value is converted in the
same manner as BCDASC routine (i.e., converted simply to an ASCII string) and
the ASCII codes are stored in Y, U, V, W and S register.

none
CF = 0: Normal termination

A = Number of the resultant ASCIl haracters {excluding the 00H)
CF = 1: An error has occurred.

AF, AF, BC

4.2.4 Subroutines for BASIC Text

Structure of BASIC program text

Each command line of BASIC program consists of a line number, line length, and program data. The
BASIC reserved words are expressed in intermediate codes and the other program data are expressed
in ASCH codes. For the intermediate codes of BASIC reserved words, see section 4.2.5 “Intermediate

Code Table”.

L 1 1 § Je] T T [¥

N —————

Line number Line length Program data CR Line number Line length
10 PRINT A
20 END
The program shown right is expanded in the memory as follows:

4CN

BASIC INTERPRETER

Address Data

CoCs 00
} 10

CoCs 0A

Ccoc7 04 -~ Line length

cocs FO
} PRINT

C0C9 97

COCA 41 -—A

cocB 0D ~~CR

cocC 00
} "

COCD 14

COCE 03 --Line length

COCF F1 ' .
]END

CoDO 8E

coD1 0D --CR

CcoD2 FF -=Code indicating the end of a BASIC program

GETCD1

Entry Address 027DH

Function Read the attribute (such as line number or reserved word) of the content of a
memory location (specified by HL register} within the BASIC program text area.

Parameter HL = Text read address
Return B = Attribute -
The respective bits of the attribute value in B register have the following

meanings (these bits are significant only if they are “1".)

MmsB LSB

B: b7 b6 bS b4 b3 b2 b1 bo

[L Character expressed’in an ASCIl code (When this bit is
“1", the ASCII code is stored in A register.}

BASIC reserved word expressed in an intermediate
code (When this bit is “1”, the code is stored in DE
register.)

Line number expressed in a 2-byte binary code (When
this bit is “1”, the code is stored in DE register.)

The PC-1600 uses two internal formats for line numbers:

1ED

BASIC INTERPRETER

Affected Register

EOSCHK

No. of bytes Example: Internal expression of “GOTO 100"

ASCIl format Variable-length F1 92 31 30 30

F1 92 1F 00 64 00

Binary format 4 bytes

GOTO

In the binary format, “1F” is the header, the next “0064” is the binary expression
of decimal number “100", and the last “00” is a dummy.

In the PC-1600 mode, usually the binary format is used.

When returned from the routine, the content of HL register specifies the address
of the block next to the currently referenced block {line number, reserved word,
etc.) This address is also stored in the work area (TEXTRP).

(Example)
1) rContent of HL when calling the routine
F1H 784 1 | - Reserved word
Content of HL when returned from the routine {in this case, B=02H and
DE=F178H)
2) F——Content of HL when calling the routine
1FH 00H 0AH oo | eeeec Line number expressed in the binary
format

‘E Content of HL when returned from the routine {In
this case, B=04H and DE=000AH)

CF = 1: The end-of-text code {FFH) was detected.

AF, B, DE, HL

Entry Address

Function

Parameter

Return

Affected Register

026EH

Check the end-of-statement code (colon or CR code) based on the bit pattern set
in B register by GETCD1 routine.

B = Bit pattern set by GETCD1
A = ASCIl code

ZF = 1: The end-of-statement code was detected.
ZF = 0: The end-of-statement code was not detected.

All registers

4/~ 4

BASIC INTERPRETER

DATSKP *

Entry Address 0262H

Function Skip from the specified text read pointer to the next end-of-line code (CR, or
“ODH"}. The text read pointer to be specified must not at the 00H code of a
binary-expressed line number or in the middle of a line number or string
constant.

Parameter HL = Text read pointer

Return HL = Address of the location where the end-of-line code is.

Affected Register AF, HL

LINSRH

Entry Address 028CH

Function Search for the line of the line number specified by DE register.

Parameter DE = Line number

Return CF = 0: The line of the specified or greater line number has been found. in this

Affected Register

case,
SRLINE (FBA8H: high byte, FBA9H: iow byte) stores the line number
found.
SRADR (F8A6H: high byte with MSB inverted; F8A7H: low byte) stores
the starting address of the memory locations where the line is stored.
(For example, if the starting address is 80C5H, then “00H” is stored in
F8A6H and “C5H" is stored in FBA7H.)
SRADRD (F1C3H) stores the logical bank number.

CF = 1: The line of the specified or greater line number has not been found: In
this case SRLINE, SRADR and SRADRbD store the line information of the
greatest among the existing line numbers.

AF

BASIC INTERPRETER

Entry Address

Function

Parameter

Return

02EEH

Return the starting address and bank number of the line next to the one that
specified by HL register.

HL = Starting address of a line

A = Logical bank number of that line

(FE2AH, FE2BH) = Address of the last line in the area to be searched for (Specify
the address in the order of the low byte and the high byte)

(FE2CH) = Logical bank number of the last line

CF = 0: The next line was found within the specified area.
HL = Starting address of the next line
A = Logical bank number of the next line
CF = 1: The next line was not found within the specified area.

Affected Register AF, AF’, HL, DE
TADCNV
Entry Address 02D4H
Function Convert a logical bank number to a physical bank number.
Parameter C = Logical bank number
DE = Address
Return CF = 0: Normal termination

A = Physical bank number
DE = Address
CF = 1: An error has occurred (e.g., a non-existing address was specified.)

Affected Register AF
Entry Address 02D1H
Function

Return the line number of the line that contains the label specified by HL and BC.

BASIC INTERPRETER

pParameter HL = Address of the first character in the label
{(Example) “START”
7
HL
BC = Number of characters in the label excluding the double quotes (")
(Example) “START" - - - BC=0005H

“u - - - BC=0000H
Return CF = 0: Normal termination
STLINE (F8A8H: high byte, FBA9H: low byte) stores the line number
found.

SRADR (F8A6H: high byte with MSB inverted, FBA7H: low byte) stores
the starting address of the line found. (For example, if the starting
address is 80C5H, then “00H” is stored in FSAGH and “C5H" is stored in
F8A7H.) _
SRTOP (FSAAH: high byte, FBABH: low byte) stores the same contents as
SRADR.

CF = 1: The specified label has not been found.

Affected Register AF, BC, DE, HL, AF’

Remarks Because this routine uses the bank switching, the calling side may need to switch
back to the original bank.

4.2.5 intermediate Code Table

BASIC Reserved Word Intermediate Code Table

High byte: £3 Upper 4 bits
§L0w59h0123456789ABCDEF
210

1 PAPER

Lower 4 bits

M MO0 |w|P>P|lo|low|N{o|olbd|lw|Nn

BASIC INTERPRETER

Low byte

Lower 4 bits

Low byte

Lower 4 bits

High byte: E6
Upper 4 bits
Low g ° ! ° x{ -
5 CSIZE
] GRAPH
. GLCURSOR
3 LCURSOR
2 i SORGN
" ROTATE
: TEXT
7
8
9
A
B
c
D
E
F
High byte: E7 Upper 4 bits
Low gh ° ! ° .
0
1
2 |
3 |
4
5
6
7
8
5 PMT
A
B
C
D
E
F

Low byte

Lower 4 bits

Low byte

Lower 4 bits

High byte: £8
Upper & bris

i ight ¢ 5 6 7 8 9 A B C D E F
0 QUTSTAT
1
2 SETCOM
3 TERMINAL
4 DTE
5 TRANSMIT
6 SETDEV
7 DEVS
8 CoMs
9 INSTAT
A RINKEYS
B
c
D
E
F

High byta: FO Ubperdbiis

a0 gt o 5 6 7 8 9 A B c D E F
0 UST | LFLES | FEED
1 SPACES INPUT CONSOLE
2 ERN GCURSOR CHAIN
3 FRL BREAK
4 CURSOR PITCH | ZONE
5 USING | CSAVE |LCURSOR| COLOR
6 IF
7 WIDTH | PRINT LUNE
8 (8 | FILES LLsT
9 CLOAD | LINE LPRINT
A PRESET RLINE
B PSET TAB
c TEST
D
E
F MERGE | GPRINT

BASIC INTERPRETER

High byte: F1
Upper 4 bits
% bl o [1] 234 5|67 8|9 |A]lB
2l MO | ASC | ABS | AREAD XPOKEZ | TROFF
1 R | SRS | WT | AR XPOKE | 1O
2 VAL | RIGHTS | BEEP | GOTO | PAUSE
3 CHRS | ASN | CONT WAT
4 N | ACS GOSUB | RUN | ERROR
5 DEG | ATH R | LOCK
2 16 DS | N | GRAD | F | READ |UNLOCK
RE STATUS | 106 | CLEAR RESTORE
S MEM | PONT | 6P LET | RANDOM
9 SN RETURN
A LEFTS | XCALL | NEXT | RADIAN
B TWE | SR | MDS | DM | NEW | ReM
c INKEYS RND |DEGREE | ON | STOP
D Pl oNoT | SN | DaTa | oev | STEP
E oEEk: | 005 | BN | OFF | THEN
F XPEEK TAN | ThON
High byte: F2 P
%Low‘9h01 2 3|4 |5 |6 7|89]| A!B |
5o NOD ADIN | BLOAD | PHONE |
1 XOR | WAKES | EOF BSAVE | SDBRK [PONSOLE
2 10C | CML | ClOSE [SNDSTAT
3 \OF | ESE | COPY | COM | MODE
4 DSKF | KBUFFS | INT JRCV STAT| PZONE
5 HEXS KEY | LOAD RENUM
216 RS | INP (EYSTAT| OPEN AUTO
;g 7 DATES | INSTR L ERASE
8 TIMES MAX FILES| ~ SET PASS
9 SAVE DELETE
A AN ouT TITLE
B POER
C ALARMS POKE AOFF
D PEEK RESUME 2
E PEEK R | ouTRUT
F ‘, ABPEND

d4nn

Functions and symbols

Intermediate code

1

AND
OR

<>

+ (sign)

— (sign)

60 2CH
70 50H
70 51H
80 00H
80 01H
80 02H
80 04H
80 O5H
80 06H
81 2BH
81 2DH
82 bb5H
83 5CH
84 2AH
84 2FH
85 2BH
85 2BH
86 5EH

BASIC INTERPRETER

Functions and symbols

intermediate code

Function name

(

Variable name

F1 GBH
FX XXH
20 28H
40 XXH ~ BA XXH

Functions and symboils

Intermediate code

)

End-of-statement
(CR, colon, etc.)

10 29H

00 XXH

CTHER FUNCTIONS
AND PRECAUTIONS

OTHER FUNCTIONS AND PRECAUTIONS

ASIC

5.1 AUTOMATIC LOADING AND RUNNING OF B
PROGRAM FILE (AUTORUN.BAS)

The PC-1600 can automatically load and run a specific BASIC program file (named “AUTORUN.BAS")

from the file device (CE-1600F or memory file).

When the PC-1600 is powered on, if it is in the RUN mode and the g symboal is not on, the PC1600
searches for a file named “"AUTORUN.BAS" in the CE-1600F, the slot S1 memory file and the slot S2
memory file, in that order. If the file exists, it is automatically loaded into the currently selected
memory module (program module or extension memory module) and executed.

5.2 CHANGING DISPLAY CHARACTER FONT

In the PC-1600, a display character is composed of a dot matrix of 6 columns by 8 lines. The font data
of each character is stored in the CG (character generator) table, in which one 8-dot column data of a
character isexpressed in one byte (or 8 bits) and the six one-byte column data forming one complete
character are stored in sequential memory locations with the data of the first column of that character

stored first, as shown below.

MsB Character font data in CG table

> 3EH

2 41H

> 41H

B 49H
B> 390H

=11 .
00H i Higher address

The PC-1600 has three CG tables: .
1. GG table that stores the font data for the character codes of from 20H to 7FH
This CG table is in the ROM of the main unit, and the fonts of these characters cannot be changed
by the user.
2. CG table that stores the font data for the character codes of from 80H to FFH
This CG table is in the ROM of the main unit, and the fonts of these characters can be changed by
the user by preparing a user defined font set in RAM and changing the contents of UPACGA and
UPACGB.
3. CG table that stores the font data for the character codes of from 00H to 1FH
This CG table is not in the ROM of the main unit. If you want to define your own character fonts to
these codes of 00H to 1FH, change the contents of CTRCGA and CTRCGB, prepare a user defined
font set in RAM, and set LCDWK (FO5DH) bit 3 to “1”.
As described, the CG tables of items 2 and 3 above can be replaced with user-defined CG table
prepared in memory. In this case, since the character fonts of all character codes allocated to that
table are to be changed, you must prepare fontdata for all these character codes even if you want to
change the fonts for only some of the character codes.

OTHER FUNCTIONS AND PRECAUTIONS

The tollowing shows the details ot the work area used tor the CG tables.

Name Address Bytes Contents
CTRCGA FOB1H 2 Starting address of the memory locations where the character font
(Low byte) data for the character codes of 00H to 1FH are stored
F062H ! (The starting address must not be lower than 8000H.)
(High byte)
CTRCGB FO63H 1 Bank number (0 to 7) of the memory locations where the character
font data for the character codes of 00H to 1FH are stored
UPACGA FO64H 2 Starting address of the memory locations where the character font
) (Low byte) data for the character codes of 80H to FFH are stored
" FO65H {The starting address must not be lower than 8000H.)
=Y (High byte)
UPACGB FO66H 1 Bank number (0 to 7) of the memory locations where the character

; font data for the character codes of 80H to FFH are stored

&

5.3 EXTENDED FUNCTION OF KEYSTAT COMMAND

The PC-1600 can accept key input from the serial port instead of the main unit keyboard.

(1) Setting procedure

Execution of KEYSTAT command with the first parameter set to “2" lets the PC-1600 to accept key
input from the serial port currently set by SETDEV command. To do this, set appropriate
communication parameters (such as the baud rate) by SETCOM command. The use of the second and
the third parameters of KEYSTAT command is the same as for the keyboard.

(2) Key codes

The key codes to be input from the serial port must be the same as those sent from the keyboard (see

section 10.2.) Code 10H has a special meaning:

10H: Indicates that the [T], [T] or [OFF] key has been released. Since the key input routine needs to
check whether or not the [1], [T] or key has been currently pressed, a code 10H must be
sent each time one of these keys is released.

With the keyboard, key codes 11H and 13H are allocated to the function keys 1 and 3 on the keyboard,
respectively. With the serial port, however, codes 11H and 13H are usually used as XON and XOFF
codes, respectively. Because of this, usually you cannot send the key codes corresponding to the
function keys 1 and 3 through the serial port. However, execution of the following POKE statements
lets the PC-1600 to interpret codes F1H and F3H sent from the serial port as the key codes of the
function keys 1 and 3, respectively.

POKE &FF40,&33,&33,&F5,&79,&FE,&07,828,&02
POKE &FF48, &F1,&C9,&F1,&E3,&CD,&61,&FF,&67,&F5
POKE &FF51,&FE,&F1,&20,802,&26,&11,&FE,&F3

POKE &FF59,&20,&02,826,&13,&F1,&7C,&E1,&C9,&E9
POKE &F3C1,&C3,840,&FF

1aQK

OTHER FUNCTIONS AND PRECAUTIONS

This example uses codes F1H and F3H for the function keys 1 and 3, however, you can use different
codes instead of F1H and F3H by changing the contents of addresses FF52H and FF58H.

FF52H: F1H « Change to a different value.
FF58H: F3H « Change to a different value.

{3) Precaution

Even when “KEYSTAT 2" statement is executed to accept key input from the serial port, the key input
from the keyboard can still be accepted: the PC-1600 accepts key input from both keyboard and serial

port.

5.4 SEGMENTING ONE RAM MODULE FOR DIFFERENT USES

A RAM module (CE-1600M or CE-161) is usually used for only one of the following three uses:

(1) extension memory

(2) program module

{3) RAM disk

However, a RAM module (if two RAM modules are installed in slots 1 and 2, only one of them) can
also be used as:

{4) program module + extension memory

In the fourth case, CE-1600M or CE-161 is segmented into two parts. The first part of the RAM module
is used as a program module and the last part as the extension memory. To do this, execute the
following statement:

INIT “$1:(or §2:)","P",<expression>

where <expression> specifies the size of the area to be used as the program module. The program
module area can have a size of a multiple of 2 KB, and <expression> should be specified by a value
of a multiple of 2 in kilobytes.

This module segmentation is possible only when the following four conditions are satisfied:
(1) No program exists in the extension memory.

(2) No program exists in the program module,

{3) No files exist in the RAM disk.

(4) The other module, if there are two modules in the slots, is not segmented.

<Segmentation example>

Slot81; ——%& bank0 bank1
Slot S$2; g (bank2 bank3)

////// v/
A <expression> Program mocy
<expression>{ |/ Program module Extension memory /// 16KB

/ Extension memory
7 N

<For CE-1600M> <For CE-161>
* When a RAM module in a slot is segmented, if there is another RAM module in the other slot and it
is used as the extension memory, the total size of the extension memory varies as follows,

400

UIHER FUNUTIUNS AND PRECAUTIONS

i (Largest bank among those having i A RESERVE area
i a size of less than 16 KB) {

(16 KB of bank 2)

Program area

(16 KB of bank 3)

(16 KB of bank 0) \

Variables area

(16 KB of bank 1)

16 KB of PC-1600 standard —_—
memory Work area

(1) First, the extension memory areas are stacked up in the order of banks 1, 0, 3 and 2. However, if
the extension memory area of a bank is less than 16 KB, that bank is not stacked.

(2) Atter those banks of 16 KB are stacked, finally the largest bank among those having a size of less
than 16 KB, if any, is stacked. The other banks of less than 16 KB are not used as extension
memory. (If there are two or more banks that have the same size of less than 16 KB, only one of
those banks is stacked being selected in the order of banks 1, 0, 3 and 2.)

5.5 FILE FORMAT

The PC-1600 can handle three kinds of files:

{1) ASCIl file : Program file or data file saved by PRINT #n, SAVE with A option, or
SAVEX command
{2) Program file : Program file saved by SAVE command

{3) Machine language file : Machine language file saved by BSAVE command
These files have the following formats:

(1) ASCIi file

@ PRINT #n “1AH" i written when the file is ciosed.

Data Data ~ Data ‘T1AH

L» End-of-file code

e SAVE with A option, and SAVEX

First program line Second program line ~ Last program line 1AH

1R7

OTHER FUNCTIONS AND PRECAUTIONS

(2) Program file

+00 +01 +02 +03 +04 <05 +0E +0F
I
FF}110]00|00 |21} L ;M}H 00|00 {00]00|0C]|0QO0!|00{OF Data {program)
L
| ——

Program size {in the order of low, middle and high bytes)

(3) Machine language file

+00 +01 +02 +03 +04 +0E +OF
T
1
1
!
I

FF{10|00j007110| L HiBlL B {00 |OF Data {machine language data)

i
MEiH|L
i

b s

-

Machine language area size

: " . -
finithecordsroaw; mladiadnchigh Eyted Starting address and bank number of the machine language area saved

(in the order of low address, high address and bank number)

Auto-run address after the machine language program is loaded
{in the order of low address, high address and bank number)
These three bytes will be “FFH” if the program is not to be automatically executed.

5.6 DATA INPUT/OUTPUT TO FILE DEVICE

(1) There are two commands to for data input/output to a file device:
PRINT #n Write data to a file device.
INPUT #n Read data from a file device into a variable.

{2) The following outlines the procedure for data ihput/output to a file device.
1. MAXFILES=m m is the number of files that can be opened at the same time. (m is 1 to 15.)
Usually this command is placed at the beginning of a program.
2. OPEN ”“<device name><file name>" FOR | INPUT AS #n

OUTPUT
APPEND
..... n must be a unique number among the currently opened files.
3. PRINT #n ... Write data.
or
INPUT #n ... Read data into a variable.
4. CLOSE #n ... When the file operation is completed, the file must be closed.

{3) End of file

While you are reading data from a file by INPUT #n command, if all data in the file have already
been read and you attempt to read data from the file, this execution of INPUT #n command
results in an error.

You can check whether all data in the file have been read, by using EOF function. Thus, when you
attempt to sequentially read data from a file that you do not know how many data items exist in
that file, you should check the end of the file by EOF function each time before you execute INPUT
#n command.

UIHER FUNGTIUNS AND PREUAUTTIUNS

i. When writing data by PRINT #n command

(1)

(2)

(3)

(4)

(1) Numeric data {without USING)

SP or ~ String expression of numeric data Sp
La- Space code
SP (space code): When the numeric value is zero or positive
b

— {minus sign code): When the numeric value is negative

® Numeric data (with USING)

String expression of numeric data in USING format

{Exampile) PRINT#1, USING “+#### ##"; —1.234

SP{sP[—-[1].]2]3|CR}LF

@ String data —

String data

If a USING format is given before the string, the string data are arranged according to the
USING format.

PRINT #n,datat,data2 (when the data delimiter is a comma)

When each data items are separated by a comma, each data item is written in units of 20 bytes. If
a data item exceeds 20 bytes, it is written over to the subsequent 20 bytes. A numeric data is
right-justified in a block.

(Example} PRINT#1, 1.23, “ABC ~ T”

SP..sP 123 SP ABC ~T CR LF

PRINT #n,data1;data2 {(when the data delimiter is a semicolon)
When each data items are separated by a semicolon, each data item is written in the format of (1)
above, and the data items are written immediately following one another.

PRINT #n,datal

When the last data item is not followed by a comma or semicolon, the data item is written with CR
and LF codes added at the end.

169

OTHER FUNCTIONS AND PRECAUTIONS

2. When reading data by INPUT #n command

(1) INPUT #n,<numeric variable>
This statement read data as a numeric value from a file device and stores it to the specified
numeric variable. If a data item cannot be read as a numeric value, “0” is stored to the variable. A
space code and a data delimiter code preceding to each data item are ignored. The end of each
data item is recognized by a comma, space, or CR+LF.

(2) INPUT #n,<string variable>
This statement read data as a string from a file device and stores it to the specified string variable.
Consecutive space codes or delimiter codes preceding to each data item are ignored. The end of
each data item is recognized by a comma or CR+LF. A comma enclosed with double guotes is
recognized as part of data (that is, not as a data delimiter).

3. Examples of PRINT #n and INPUT #n commands

Example 1
When you execute

PRINT #1,A%,B$ (where A$="ABC” and B$="CD")
the data are written in the following format:

ABCsp sp cD CR | LF ‘

Then, when you execute the following statement to read data from the previous file:
INPUT #2,A%(0) (assume DIM A$(0)%80 has been executed)

the data are stored to A$(0) as follows:
A$(0) = “ABC sp sp CD”

Example 2
When you execute the following statement to read the same data as Example 1:

INPUT #2,A$,B$
the data are read into A$ as follows:

A$="ABC sp sp”
(16 bytes of data)

then the INPUT statement results in an error because there is no data to be read to BS. In this case,
the data “ABC sp sp CD" are treated as one data item, and only the first 16 bytes of data are
stored into AS$, therefore, no data is left for BS.

47N

OTHER FUNCTIONS AND PRECAUTIONS

Example 3
Suppose you have executed the following statement:

PRINT #1,1.23,456

Now, you read these recorded data by the following statement:
INPUT #2,A,B

Then you get the results:

A=1.23 and
B=456

This is because, different from examples 1 and 2, a space code is treated as a data delimiter if the
input variable is a numeric variable.

4. PRINT #n and INPUT #n commandsto serial port (RS-232C or SIO)
{1) The data format is the same as item 1 above.
(2) With PRINT #n command, the data are actually output to the serial port when one of the following
events occurs:
o When the amount of output data reaches 258 bytes
e When the serial port is closed
(3) With INPUT #n command, the received data are actually stored to the variable when one of the
following events occurs: '
& When the amount of received data reaches 256 bytes
® When an EOF code (1AH) is received

5.7 PRECAUTIONS FOR USE OF SERIAL PORT .
(RS-232C AND SI0O)

(1) Transmission speed

For communication at higher transmission speed, set the size of the receive buffer as follows (by
using INIT “COMn:" statement.

Transmission speed (bps) f Receive buffer size (bytes)
4800 to 9600 80 or more
19200 130 or more

38400 l 1100 or more

OTHER FUNCTIONS AND PRECAUTIONS

{2) XON/XOFF flow control

When XON/XOFF control is used, execution of any of the following commands to a serial port may
cause an XON (11H) code to be generated at the beginning of the command execution.

OPEN “COMn:" SAVE BSAVE LOAD
LLIST INPUT BLOAD LPRINT

The following shows an example in which an XON (11H) code is not generated when the OPEN
“COMn:" statement is executed.

SETCOM “COMnN:",1200,8,N,1,N,N ... (XON/XOFF is disabled)
OPEN “COMn:" FOR INPUT AS #1
SETCOM “COMn:",1200,8,N,1,X,N ... (XON/XOFF is enabled)

(3) Data format
A - "

=

{

xon| 1 o] -l F|lo|R|IM|A|T |spacelspacel b | y fspacel P ¢ | 116 {0 lolcaite] 20 |
{
i

<1> When the XON/XOFF control is enabled, opening a serial port or executing a SAVE, BSAVE,
LLIST or LPRINT command may cause an XON code to be generated.
When the XON/XOFF control is disabled, an XON code is not generated.

<2> With a file, the end-of-line code (CR or CR+LF) is always converted to CR+LF. However, for data
transmission with LPRINT, LLIST or INPUT command, the end-of-line code can be specified to
CR or CR+LF by PCONSOLE command.

(4) Serial port
(a) To select the RS-232C port, execute
SETDEV “COM1:"
or
OPEN “COM1:”
The default port at power-up is the SIO port (COM2:).

{b) To select the SIO port, execute
SETDEV “COM2:"
or
OPEN “COM2:"

OTHER FUNCTIONS AND PRECAUTIONS

ic R$-232C control signals
4% The load of the outgoing control signal RST or DTR should be 3 to 7 kilo-ohms. Thus, do not

connect the RST signal, for instance, to two signal lines on the remote system.
Control of RTS signal
The RTS signal is usually held at low, but can be set to high by OUTSTAT “COM1:" statement.
2 QUTSTAT "COM1:"
While an RS-232C input/output command (SAVE, BSAVE, LOAD, BLOAD, LLIST, or LPRINT) is
being executed or while the RS-232C port is open as a file, the RTS signal is held at high. it goes
low when the command execution is terminated or when the RS-232C port is closed.
The RTS signal also works as the busy signal for data reception. The RTS signal goes low when
the receive buffer is getting full and the free space in the buffer becomes 8 bytes, and it goes high
when the received data in the buffer are read into the system and the number of remaining data.in
the buffer becomes 8 bytes.
Control of CTS, CD, and DSR incoming signals
e RCVSTAT “COM1:",<expression>
This statement specifies which incoming signals (CTS, CD and/or DSR) are used to control data

reception. Bits 2 to 4 of <expression> correspond to STC, CD and DSR. -

5

<expression> = | * * * bs §{ by | by * *

{Bit pattern in binary notation)

L——»CTS is used for data reception control.

L CD is used for data reception control.

- DSR is used for data reception control.

Bit = {0 : This signal is used for the data reception control. {(When this signal is high, the data
reception is enabled. When this signal is low, the data reception is disabled.)
1: This signal is not used for the datfa reception control. (The data reception is enabled
regardless of this signal.)

o SNDSTAT “COM1:",<expression>
This statement specifies which incoming signals (CTS, CD and/or DSR) are used to control data
transmission. Bits 2 to 4 of <expression> correspond to STC, CD and DSR.

<expression> = | % * * b: | by | b * *

{Bit pattern in binary notation)

‘—————CTS is used for data transmission control.

\———————3»CD is used for data transmission control.

+———— DSR is used for data transmission control.

Bit = [0 : This signal is used for the data transmission control. {(When this signal is high, the

data transmission is enabled. When it is low, the data transmission is suspended.)

1 : This signal is not used for the data transmission control. (The data transmission is
enabled regardiess of this signal.)

OTHER FUNCTIONS AND PRECAUTIONS

@ QUTSTAT “COM1:”,<expression>
This statement sets the RTS signal to high or low according to the value of <expression>. (For
the relationship between the value of <expression> and the state of RTS signal, see the table
in item 3) below.
Control of DTR signal
The DTR signal is usually held at low, but it can be set to high by OUTSTAT “COM1:" statement.
e QUTSTAT “COM1:”
While an RS-232C input/output command is being executed or while the RS-232C port is open
as a file, the DTR signal is held at high.
® QUTSTAT “COM1:" ,<expression>
This statement sets the DTR signal to high or low according to the value of <expression>.

<expression> RTS DTR

0 High High

1 High Low

2 Low High

3 Low Low

4)

5)

6)

8)

CTS signal {incoming signal)
The CTS signal can be used for the data reception control and the data transmission control of the
RS-232C port.
DSR signal (incoming signal)
The DSR signal can be used for the data reception control and the data transmission control of the
RS-232C port. '
CD signal (incoming signal)
The CD signal can be used for the data reception control and the data iransmission control of the
RS-232C port.
Ci signal {incoming signal)
The Cl signal is used as a calling indicator from the modem. For example, you can use the Cl
signal to power on the PC-1600 and execute a specified program, or to interrupt the current
program execution and move the control to a modem handling program.
e WAKES$(1)="<command string>"
When this statement has been executed, if the Cl signal goes high, the PC-1600 is turned .on and
the specified command string is executed.
e ON PHONE GOSUB PHONE ON/OFF/STOP
When these statement have been executed, if the Cl signal goes high, control is moved to the
specified subroutine.
Note: To let the PC-1600 to be powered on by the Cl signal, the Cl signal must be held at high for
more than one second.
INSTAT “COM1:”
This statement reads the states of the RS-232C contro! signals: the incoming signals (CTS, DSR,
CD and Cl) and the outgoing signals (RTS and DTR). With this statement, you can know the state
of the remote machine. The following shows the meaning of a value to be returned by this
statement.

OTHER FUNCTIONS AND PRECAUTIONS

b, 0

bs) 0

bs State of Ci(“0" means hxgh “1” means “low")
bs State of DSR { “0” means “high”; “1" means “low"”}
ba State of CD { “0” means “high”; “1” means “low”)
b, State of CTS (“0” means “high”; “1” means "“low")
b4 State of RTS (“0” means “high”; "1" means “low")
bg tate of DTR { “0” means "high”; "1” means “low")

9) Timeout value for data reception and transmission
® RCVSTAT “COMn:",<expression1>,<expression2>

The <expression2> of this statement specifies the timeout value for data reception.

<expression2> = 0 : If no data has been received in the receive buffer,.a command to input

data from the serial port waits until data comes in.

<expression2> = 1 to 255 : If no data has beern-received in the receive buffer, a command to

input data from the serial port waits for a maximum of <expression2>/2 seconds. If
no data comes in within that period, the command execution results in a timeout
error.

¢ SNDSTAT “COMnN:”,<expression1>,<expression2>

The <expression2> of this statement specifies the timeout value for data transmission.

<expression2> = 0 : [f the data transmission to the serial port is disabled when a command to

output data to the serial port is executed, the command waits until the data
transmission is enabled.

<expression2> = 1 to 255 : If the data transmission to the serial port is disabled when a

command tc output data to the serial port is executed, the command waits for a
maximum of <expression2>/2 seconds. If the data transmission is not enabled
within that period, the command execution results in a timeout error.

A timeout error occurs in either of the following cases:

(1) When the XON/XOFF control is used, if the PC-1600 does not receive an XON code (11H)
within the specified period of time since it has received an XOFF.code (13H).

(2) For data transmission to the RS-232C port (i.e., COM1:), if the incoming control signal that
has been specified for the data transmission control does not go high within the specified
period of time.

e RXD$

Even when the PC-1600 has received 11H code or 13H code, an RXD$ command may not return

these codes.

& SETCOM “COM2:"

For data transmission/reception to the SIO port (i.e., COM2:), specify the same XON/XOFF

control setting to both COM1: and COM2:.

® RCVSTAT and SNDSTAT
Do not omit the <expression1> when you use these commands.

4=

OTHER FUNCTIONS AND PRECAUTIONS

5.8 TRANSFERRING A BASIC PROGRAM BETWEEN PC-1600
AND OTHER MACHINE

The data format for transmission/reception of a BASIC program through RS-232C is different between
the PC-1600 and other personal computers. Therefore, you cannot transfer a BASIC program through
RS-232C simply by using load and save operations. This section describes a method to transfer a
BASIC program between the PC-1600 and a different personal computer (PC-7000 or PC-5000), in
which the PC-1600 uses the LOAD or SAVE command and the other personal computer uses a special
file transfer BASIC program {described later).

(1) Connecting the computers
The method described here uses only three signal lines of RS-232C (transmit data line, receive data

line and ground line).
Connect the PC-1600 and the other personal computer through their RS-232C connectors with the

appropriate RS-232C cable.

(CE-1603L cable)

PC-1600 <= # PC-5000
{CE-1604L cable)

PC-1600 == ~¥ PC-7000

{2) Setting up the PC-1600

To transfer a BASIC program, the PC-1600 uses the LOAD or SAVE command. Before starting the
program transfer, you must initialize the PC-1600's RS-232C port as described in item (4) “Com-
munication procedures” below.

You can use any baud rate, however, you must use the same baud rate between the two computers. If
you use a baud rate of 4800 bps or higher, set the PC-1600’s receive buffer size to the following value
(by using INIT command):

Baud rate : Receive buffer size iminimum value)
4800, 9600 80
19200 _ 130

(3) Setting up the remote computer

The remote computer uses a special BASIC program to transfer a BASIC program file. The following
lists the file transfer programs and the setting conditions for different computers.

Personal Tvran_s_fer File transfer Setting conditions
computer direction program
PC-7000 -+ PC-1600 List 1 GW BASIC
« PC-1600 List 2 GW BASIC
PC-5000 — PC-18600 1 List 3 GW BASIC
—PC1600 | List 4 GW BASIC

.
u

WUl B LIk ke B

@&ma@wuﬂm&

&é

OTHER FUNCTIONS AND PRECAUTIONS

xote: Some personal computers do not suspend the data transmission even when the PC-1600 sends

an XOFF code. For data transmission from such a computer 1o the PC-1600, take the following
measures:
PC-1600 side:
Set the receive buffer size to 600 bytes or more.
Remote side:
Let the computer to wait for about 0.1 to 1 second each time the computer has sent one line
of data, so that the PC-1600 does not have to send an XOFF code to the remote computer.

INPUT "FILE NANE (PC—-1686G toc PC-720@)";LECCEES
OPEN LECCEE$ FOR OUTPUT AS #2

OPEN "comli:1200:.n.8,1:1£" AS #1

PRINT "READY! !":BEEP

5% IF LOF(1)=0 THEN S50
£% PRINT #1,CHRS(¥H11)
TZ X2¢=INPUTS(1l.%1)
22 IF X2¢=CHRS(XH11) THEN 70
2@ IF X2$=CHR$(%HA) THEN 70
18@ IF X2%$=CHR$(%H1A) THEN 169
i1@ LINE INPUT #1.,X1$:X 1$ X28+X1s
12@ PRINT #1,CHRS(&HiI3) o
132 PRINT Xis
142 PRINT #2:.X1%
5@ GOTO 5O
15@ CLOSE:END
iist 2
2% INPUT “FILE NAME (PC~7000 top PC-18508)"3LECCEES
=% OPEN LECCEE$ FOR INPUT AS #1
58 OPEN "COM1:1200.,N,8:,151£f" FOR OUTPUT AS #2
F$ IF EQOF(1) THEN 129
&% LINE INPUT #1,Xis
22 PRINT X1s$
130 PRINT #2,X1$
119 GOTO 70
123 PRINT #2,CHR$(&H1A)::CLOSE :END
iist 3
i INPUT "FILE NANME (PC—-1600 to ~C-S000)"3sLECCEES
29 OPEN LECCEE$ FOR OUTPUT AS #2
3% OPEN Y"comi:l1200+vn+8-,1,LF,CS@0" AS #1
52 PRINT "READY!iI":BEEP
258 Y2$=INPUTS(1.#1)
T@ IF X2¢$=CHRS(X&H11) THEN B
Z2F [F X2%$=CHR$(%HA) THEN 69
@2 IF X2%=CHR$(XH1A) THEN 160
122 LINE INPUT #1,X13:X1$=%X2%+X
.i2Z PRINT #I,CHR$(&H13).
122 PRINT Xl1s
139 PRINT #2,X1%
@ PRINT #1,CHR$®(&H11):
y GOTO B
; CLOSE:END

)
et
K

INPUT "FILE NANE (PC-509@ to PC—~1560@)";LECCEES
OQPEN LECCEE®$ FOR INPUT AS #1

BEEP:PRINT "READY?!i™

QPEN "COM1:1200.N.8, 1.LF" FO3 OUTPUT AS #2
LINE INPUT #1,.X1s%

PRINT X1$

PRINT #2,X13%

I[F EOF(i)=@ THEN 40

FPRINT #2,CHRS (XHiA):

CLOSE

END

OTHER FUNCTIONS AND PRECAUTIONS

{4) Communication procedures
(

a) Procedure to transfer a BASIC program from PC-1600 to the remote computer

Operations on PC-1600

Operations on remote computer

1 (Create a BASIC program.}

2 {Save the BASIC program.}
Example: SAVE “X:TEST”

w

Set up the communication protocol.
1) OQUTSTAT “COM1:",0

2) RCVSTAT “COM1:", 63

3) SNDSTAT “COM1:", 59

4) INIT “COM1:",," """

4 Load a BASIC program you want to transfer.
Example: LOAD “X:TEST”
5 Execute the appropriate data reception BASIC
program.
{Loading program from RS232C)
6 Enter a file name to save the received program

data into a file with that name.

7 Start sending the program by executing the
following statement.
SAVE “COM1T:" A

{
|

Note: To send another program after you have sent one, repeat the above steps 4 to 7.

(b) Procedure to transfer a BASIC program from the remote computer to PC-1600

Operations on PC-1600

OCpersations on remote computer

1 Set up the communication protocol.
1} OUTSTAT “COM1:”,0

2} RCVSTAT “COM1:",63

3) SNDSTAT “COM1:”,58

4) INIT “COM1:", 600,"",""

Execute the appropriate data transmission BASIC
program
{Saving program to RS232C)

3 Execute LOAD “COM1:"

4 ~ Enter a file name of the file you want to transfer.
5 After the program has been loaded into memory, |

save it.

Example: SAVE “X:TEST”

Note: To send another program after you have sent one, repeat the above steps 2 to 5.

OTHER FUNCTIONS AND PRECAUTIONS

MERGING PROGRAM FILES

The merge operation described in this section basically has the same function as MERGE command of
BASIC, therefore, the foliowing rules apply to the merge operation.

T

[Y

g,*,‘s

The merge operation loads a program (specified in LOAD command) into memory without deleting
the programs previously existing in memory. That is, different programs may coexist in memory.
These coexisting programs may have the same line numbers.

Fach ioaded program must be labeled {(i.e., defined to a key on the keyboard (such as “A" or “S”).
For details of the labeling, see OPERATION MANUAL, section IV 8 “Program Labels and the
Key”.

If an unlabeled program is loaded, label it immediately.

The programs must be labeled to different keys.

When you load a program by this merge operation, that program will be the object of edmng To
edit the other programs, specify a program explicitly by LiST “label” command.

This merge operation will result in an error if a password is set to the PC-1600 main unit.

If READ and DATA statements are used in a program and the DATA items are to be re-read by a
RESTORE command, label the first line of the DATA block and specify that label when you re-read
the DATA block by a RESTORE command. “

If DATA statements are used in more than one program, unexpected data items may be read
depending on the program execution state. -

After the merge operation is performed, the fixed numeric variable Z contains the value “0”
{because it is used for the merge operation.)

File merge operation procedure

Execute the machine language program I (by CALL command of BASIC).
Execute LOAD “<d:filename>" (where <d:filename> is the drive and the file names of the file you

want to merge.)
Execute the machine language program I (by CALL command of BASIC.)

Note: Perform steps 1, 2 and 3 in that order and do not perform any other operations between them.

Even if the LOAD operation of step 2 has resulted in an error, be sure to perform step 3.

ftachine language program I
C2p2:3A D5 Fl1 FE @1 30 28 3A 2B FP 32 CA FS ZA 565 FB :
DP1@:22 CB8 FS ED 5B 67 F8 B7 ED 52 24 2C F9 20 ©3 BD

%

D830:19 F@ 28 63 21 23 F@ ES 11 C8 F9 01 23 92 ED BO

“BZBi28 G4 14 20 0L 1C ED 53 65 F8 7D 32 2B FZ CS 21

- DE4QSEB El U6 ©3 1A BE 77 28 91 @C 13 23 10 F6 78 B7

2T@iC8 BE 23 56 13 28 2B 2B 72 2B 73 CS

. M=achine language program I

DESCI3A DS Fl FE 91 39 22 3A 2B Fg 32 C4 F1 3A CA FB
ogECe32 2B FO 2A 65 FB 22 68 F8 2A C8 F9 22 65 F8 7D
Dg7C:6C FB 80 67 22 C8 F8 18 20 2! !B FO 28 83 21 25

Sz8CiF@g 7VE 32 C4 F1 2B 7E EB 7F SF 2B 56 ED 53 69 F8
D@8CiEB 21 C8 F9 @91 @3 90 ED B® 11 3C FE 21 C8 F9 91
238C:03 0@ ED BO 21 CB F9 AF @6 98 77 23 1@ FC 24 63

»@RCIF8 22 BE F8 3A C4 Fl 32 C1 F1 C3

OTHER FUNCTIONS AND PRECAUTIONS

Note: The starting addresses of the programs I and I are “DO00H” and “DO5CH”", respectively.
However, they can be placed in any other locations because they are relocatable.
it would be useful if you save the programs in files by BSAVE command after loading them by

POKE command.

5.10 SAVING AND LOADING THE RESERVE AREA

You can save and load the contents of the RESERVE area to and from a file by using BSAVE and
BLOAD commands.

{1) Saving the RESERVE area from the extension memory

Extension memory Extension memory .

module in slot S1 module in slot $2 Saving procedure
None None BSAVE “<devicename:filename>",=0,&C008,&C0C4
Fgue o CE-1800M or | ok 1600M or CE-161 BSAVE “<devicename:filename>" =2, &8008,&80C4

None or CE-1600M or

CE-159 or CE-155 BSAVE “<devicename:filename>",#0,&A008,&A0C4

CE-161
CE-151 None ! BSAVE “<devicename:filename>",=0,&B008,&B0C4
CE-1600M or CE-161 Nane [BSAVE “<devicename:filename>",=0,&8008,&80C4

i

(2) Saving the RESERVE area from the program module

RESERVE area in the program module in slot S1 BSAVE “<devicename:filerame>",%0,&8008,&80C4

RESERVE area in the program module in slot §2 BSAVE “<devicename:filename>",#2,&8008,&80C4

(3) Loading a file data into the RESERVE area

(a) BLOAD "“<devicename:filename>"
This statement loads the data from the specified device and file intc the same RESERVE area as
saved in items (1) or (2} above.

(b) BLOAD “<devicename:filename>",<#bank number>,<starting address>,<end address>
This statement loads the data from the specified device and file into the specified memory
locations. The locations of the RESERVE area are the same as described in items {1) and (2) above.

OTHER FUNCTIONS AND PRECAUTIONS

5.11 DISABLING THE KEY INTERRUPT DUE TO ON KEY
STATEMENT |

If a function key is pressed for an INPUT command, the key operation is memorized as a key interrupt
even if the key is pressed after a KEY(n) STOP statement has been executed, and the key interrupt
becomes effective when a KEY(n) ON statement is executed later.

To avoid a function key operation for an INPUT command from being accepted as an interrupt (that is,
to disable a function key operation for an INPUT command), execute the following lines:

KEY(n) STOP
INPUT command
POKE &F1D4,PEEK(&F1D4) AND &CO0

KEY(n) ON

<04

OTHER FUNCTIONS AND PRECAUTIONS

5.12 CE-153 CONTROL UTILITY (FOR PC-1600)

(1) Basic specifications

The CE-153 control utility program allows the CE-153 (which is a peripheral device for PC-1500) to be

used with the PC-1600.

1. The basic specifications of the utility program are the same as those of the utility program written
for PC-1500 which comes with CE-153, except for the following points. Thus, if you want to use a
CE-153 application program written for PC-1500 for the PC-1600, you may need to change part of
the program according to the following changes.

For PC-1500 For PC-1600

When operating the keys on the CE-153, let- | When operating the keys on the CE-153, let-
ters and numbers entered from the PC-1500 | ters and numbers entered from the PC-1600
are stored into the variable Z$(0). This variable | are stored into the variable Y$. This variable
can contain up to 80 characters. can contain up to 16 characters.

Differences

2. As shown in the following memory maps, in the PC-1500, the CE-153 control utility program
(written for PC-1500) is loaded from the top of the RAM area (i.e., in the machine language area
before the BASIC area). In the PC-1600, however, the utility program {written for PC-1600) is loaded
in the middle of the RAM area (before the system work area and after the BASIC variables area).

PC-1500 PC-1600
Address Address
Low Low Baoke
CE-153 control utility !
program Text
BASIC area
{ Variables
Text %
BASIC area
Variables CE-153 control utility
1 program
System work area System work area
HIGH HIGH

(2) Entering and saving the CE-153 control utility program

List A shows the dump list of the CE-163 control utility program. This utility program is written in the
LH-5803 machine codes in the relocatable addressing structure. Enter and save the utility program in
the following procedure:
1. Execute: MODE 0
2. Reserve 1.2 KB of machine language area.
Example: When no memory module is installed
NEW “S0:",1392
This statement reserves the machine language area of 1200 (=1392—192) bytes starting
from COC6H.

109

OTHER FUNCTIONS AND PRECAUTIONS

3. Enter the codes of list A by using POKE command.
The following BASIC program would be helpful to enter these codes.
10: A=&C0C6
20: CURSOR 0,0: PRINT HEX$(A);: INPUT X
30: POKE A X: A=A+1
40: GOTO 20
(To terminate the program, press the key.)
4. When the codes have been entered completely, save the program into a cassette or disk.
Example 1: Saving to a disk
BSAVE “X:filename”, #0,&C0C6,&C54F
Example 2: Saving to a cassette (through CE-1600P)
CSAVEM “filename”; #0,&C0C6,&C54F
Example 3: Saving to a cassette (through CE-150 in MODE 1)
MODE 1
CSAVEM “filename”; &40C6,&454F

List A

Memory address data

COCe—CD 46 0g 8E NE 46 n1 aE gz
COCE-DS SE 35 04 HE FE S FDh 58
2 ACE~DD c& BE BS 11 FO Ca 58 7B
CODE~ES S A BA 9 FS &2 D3 9E
CNEE—ED oC oo 2E 2 FGr ©& FL SE
COEE-FS EGR 78 &8 01 B Uf BA 0
COFE—FD 48 i a4 9B BE E& A&F 2a
SOFE-0S &4 FF ©h @& 83 04 W™ FO
106—-0D 9 F @#2 5% 80 BS FC S5
C10E-15 o ED 1€ ES pn 52 FD 1E
Ci16-1D S0 ng Fo 1E FO @AE =20 nE
C11E-25 RE 77 ED g 94 FD iE B#
C126-20 03 88 n¢ Fr EOD 21 NE FF
C12E-35 83 iS5 FDO EL 20 aF B3 an
013Z6-3D DE 43 D5 91 12 Fbr 1E 4E
L1ZE-45, 03 23 22 54 DF 9E 23 n4
£146-4D Fi 08 SA OF FL 15 BF 0z
Cl4E-55 ga 21 4n BF a1 3% 1C 40
15550 52 FbO i1s EBF 81 99 14 an
D1SE-6S DS 23 tn 99 35 FE BS FF
C16E-ED 2E 50 @s TE aF FOr 92 FO
C16E-75 as &E 05 g4 F1 RE FE 0g
C176-7D s A S8 22 FO LS E® oF
C17E-25 06 93 o0 BE DD 2F &0 &g
C186~8D =0 FO =& FB £® Fi B9 0F
C1EE~-95 ua 43 gn BE DL 2F &L 483
£196-9D T af 21 S2 TP 58 FR &R
C19E-AS a9z FS5 &8 B3 5= mn o FD B
C1RE~AD F3 B3 L0 ED 7& S5& 01 5T
C1HE-BS 08 FD 55 F3 BZ 57 FDO CA
C1B6-BD 05 F9 ©0Aa FO =2a FO 1& AE
C1BE-LCS B ns 25 =E 57 2E al 2E
C1CE-CD Al Iz o 1 2 03I 4 CS
Ci0E-DS C6 ©F ©L©2 B4 B2 Al A a2
L10E~DD i) 0% Do D1 L2 03 Dd DS
C1DE-ES DE DF LE AC BC =24 24 a4
C1EE-ED e 0 En El EZx EZ E4 ES
- C1EE-FS E& E? E2 B0 SE 91 a1 I
D1F&~FD NS A% Fo Fi FZ2 F3 F4 FS
CiFE-DS F& F? F2 @b 2 @A BC BA
C20E6—-0D HE N nag 1 2 0z 04 s
C2DE-15 it 07 oE 92 @% SAa 89 82
C216=1D e 09 10 11 2 13 14 15
2Z21E-25 & 17 12 B g3 9% 9F 83
Co26-2D N3 il D=1 | 22 2% 24 25
C2ZE-35 26 27 = a5 E5 EC BS ES
C2Z6-2D ik 09 0 31 2z 2z 34 25
C23E-45 36 37 33 95 86 EE RE [E
C24E-4D i ne an 41 42 43 a4 4
C24E-55 46 47 48 7 87 BF af¥ BF
L2SE~-SD 0 ne s 59 Sz 53 54 55
C2SE-65 SE S¢S 90 BF g2 92 93
CoEG~ED RE 64 RE v4 4% FB ER TR
CZEE-FS DE 4) 3% s BS BD QAE FE
C2TE~7D 2% BS =20 &E 7B A &8 FB
LaTE-SS Ch @E 23 S92 BE E4 12 589
L2E6-20 47 BS FF FQ ®E 8D o0& FO

OTHER FUNCTIONS AND PRECAUTIONS

Memory address data

[an i

oz Fir ES ¥

[l na Fi o0 aF =]
¥ FQ [ata) ne ar = (=]
o BE g = 53 =L EDs TE
£ 0 % EE TE it
i BE TE EF =i (1
G F bRl SE SE I L
= EBEE Ed 20 S22 a0 S 0
[t e RS 22 e 2E 27 2380 S
C2DE~ES =3 C =0 Te nE 01 GE
CZEe—ED Ef vE e <41 e &1
C2EE~FS 21 a4 ES 7B FE g
C2F&~-FD T Ly 28 10 TE a1
CEFE-US =1 17 e e X 20 He
CInE-00D on TE =F Fibd T o TF
CINE-1Z a1 0z i) = Th o0 Fi
C31s-1D 26 BS s7 Fh CE i 5 Fi
CI1E-325 <] RE [0 85 g2 HE e 03
C326-2D EQ TE 0g IF L35 = 9 35
C32E-35 ED B BE 40 o8 S 3 e
CI3E&-3D Ta oF 29 192 33 7B 46 ne
C3IZE-45 05 a3 ne 91 = 25 FB nE
C24E—40 55 7B arF [ala] ZE S& (3= e
CI4E-55 &8 4E 4E 23 =B 4E 4E B
CIS&-3D 28 26 & B3 SE 19 43 FiE o
CIASE-5S 8E ES 55 = no £ 03 R
(ot A et AN SE FE =} SE RE B 1 A
L3&E-70 a2 E TE a@o B3 Gl FH 23
DATE-7TD =34 81 eS FD 2E &H 12 BE
C3ITE-BS S) SE ic L ED Fi oF
LI3ge-2D us 59 PN a5 2 S0)] 23
C3BE-23 0E 2 2L PES Ba e SE 1C
CZ296~9D 2s =] fsd E9 e 2E 23 25
C32E~R3 B2 T3 SE 2C 25 B 82 ga
C3RE—~AD TF SE 2F 2E 27 1) EN B2
C3AE-BES 87 &5 2% X ED 71 sC 41}
CIZBE6-BD 292 1D EB 72 4 01 (3 3
CZBE-CS TS Fr e =) S oz = T3
CaCe~-CD L HE Ta ¥a BH EF =18 s
CECE-DS Ao Fh sn QE ©e s Sa =S
CIZ0he-DD 7S gs) FD 35 SE 12 ce 22
C3LE-ES FD 88 oo 54 FD 28 FL et
L2ES-ED B5 28 Fhx ZA FD =8 CE =52
CIEE-FS . 4F &0 S 33 [l oa EQ T
CIFe—F[T 3o S 12 =3 7a TS SB
DIFE-0S gF bF S5 (113 Fe £ 25 a3
Cans—-nn =2 05 FE SE BB 38 25 o
C4GE~15 &1 24 3B OH Fa B FF BE
C316-10 vE v ce re= 2R 10 ES 3
DE1E-25 RE = 290 EE X Z4 =
caze-2D oe EN E2 7B Bd an Te
DdzE-3ZS T4 ni o9 A 341 EE TE
D4 Z2e-20 aE | e £Q e PR EE
CRIE-45 FE oo 0 E7 20 s1 SE
Lad - =30 a1 1E 1E 5E FF G
C44E~5% =] ED TE s 31 =4 Ef

OTHER FUNCTIONS AND PRECAUTIONS

- o - 7 " T " - T — " o s frwn v b " e e = = T m s T I S St Tt St e e o P M ot T = e taa o S e e - St i i A e St o A s e St - e 2 e

- SD TS S3 02 8® 97 BE EE 714
0 £5 EE 72 S& D2 &A ig BE 7B
o S0 43 EBE E® C& SE 3& SE oo
> TS s 24 G E9 7B BE BF BT
s o DE SB &g BY N 8B &6 87
e 55 i2 &8 7S5 BY 1a BB 71 SE
% 20 e 51 EGZ B BD® 3B B2 BT
* a5 az S8 4E BT 1G£8 3% BT
CASE—GD 1 99 3 {5 BF 4O BB 24
CASE-OS FS BS FF 18 g1 ie FCL as
CAfE-gD s 88 23 Ssa FF FD 18 45
C4nE-B3 45 EBY ET St g2 B3I Ok 0E
C4BES—ED 47 ST 2% 04 FB FO o0& FO
CABE~CS 2z BS 2T 1E 2E 3IF¥ BE 79
CECE—LD 2E 74 SE SE FD 93 Fp 18
S4CE-DS is B FF 28 44 2E 01 F3
Ca4bE—DD 2z 93 &S op fE FL i& BE
CADE~ES 12 15 ET ar 8B it SE FF
CYEGE—ED 28 12 S4¢ EB 7B A &5 BE
L4EE-FS gz SE 21 21 g2 S 2E 0D
CAFE—FD BE LD 34 S§ BD ER FS 53
CAFE-05 g2 98 CF 9E &l 43 TE 44
CSNE~00 g9 s BF 00 28 232 41 91
CSHE-15 98 94 BI 4F 48 BN ©D 24
CSi6—1D ck 92 2% E® T 28 EF BE
CS1E-25 on 24 EA iz BE FE A& FO P
DS25—2 G& LA 24 FO o0& CA 83 FS
CSZE-35 g5 FB OF B3I 40 oA 45 00
LSZE-3D FE S& &% Y SE B2 B3 20
SS3E-45 F 1a FO 2a FD 1a Fo 1&
$545-4D FO is FOr 1a E2 P2 38 EF
CS4E-4F EQ oo

(3) Loading the CE-153 control utility program

1. Turn off the power of the PC-1600 main unit, then remove all memory modules.
2. Connect CE-150 to the PC-1600 main unit.

3. Turn on the power of the PC-1600 main unit.

4. Set the PC-1600 in the RUN mode, and execute the following commands:

MODE 1 ~
A=1200
CALL &2DD,A

(These commands reserve a memory area in which the utility program is loaded.)
5. Connect the cassette tape recorder to the PC-1600, set the cassette tape containing the utility
program, and execute the following statement.

CLOADM XPEEK&7035%256+XPEEK&7034—-32768

Now the utility program has been loaded in memory.
The loaded program will be destroyed if you do ALL RESET.
Now, turn off the power of tHe PC-1600 and install the necessary memory modules.

(4) Executing the CE-153 control utility program

1. Execute the following statement:
XCALL (XPEEK&7035% 256+ XPEEK&7034—32768)

This statement is equivalent to the statement CALL &40C6 of the CE-153 control utility pregram
written for PC-1500.

OTHER FUNCTIONS AND PRECAUTIONS

2. Special usage 1 of software keyboard (See CE-153 INSTRUCTION MANUAL.)
XCALL (XPEEK&7035%256+XPEEK&7034—32768)+4

3. Special usage 2 of software keyboard (See CE-153 INSTRUCTION MANUAL.)
XCALL (XPEEK&7035%256+XPEEK&7034—32768)+8

Notes 1: You must specify a character display position by CURSOR command before you run the

utility program.
Example: 100: CURSOR 0,0: XCALL &6B50

2: Characters entered from the software keyboard are always displayed on the third line
(bottom line) of the screen. Therefore, CURSOR command is effective only to the X
coordinate value.

3: When the software keyboard is in use, the cursor display is always on and'the cursor type is
the two-character composite cursor (an underiine and a space).

5.13 RST COMMANDS OF SC-7852 (2-80)

Some of the RST commands of Z-80 are open to the user. These commands are used to jump to a
system work area. (When the system is in the reset state, RET command is written in the system work
areas.) A system work area of 3 bytes is prepared for each user RST command. By writing a JP
instruction into these three bytes, the user can move control to an arbitrary routine.

RST command Description

RST 00H System reset

RST 08H_ T¢ Fo L& Reserved by SHARP
RST 10H - Reserved by SHARP
RST 18H Reserved by SHARP
RST 20H | I0CS for inter-bank call
RST 28H A Reserved by SHARP
RST 30H JP FOD4H Open to user

RST 38H JP FOD7H Open to user

OTHER FUNCTIONS AND PRECAUTIONS

5.14 SC-7852 (Z2-80) AND LH-5803 MICROPROCESSURS

(1) Switching the microprocessors

The PC-1600 has two main CPUs: SC-7852 and LH-5803. The system uses one of the two CPUs at a
time: when one is in the operation state, the other is in the non-operation state. Usually the system
uses SC-7852 (Z-80) as the main CPU. For control of a peripheral device for PC-1500 or for execution
of a program written in the LH-5803 machine language, the CPU is switched to LH-5803.

(2) How to call an LH-5803 machine language program subroutine from
SC-7852

To call an LH-5803 machine language program from SC-7852, use the following I0CS routine.

CALLH

Entry Address 01C6H

Function Move control from SC-7852 to an LH-5803 machine language program sub-
routine. When the program execution is comp!;éted, control returns to SC-7852.

Parameter Set the parameters in the appropriate addresses as described in the following
table.
Name Address*1 l_ Contents
CmDz FOO2H Operation mode*2
(7002H) |
i
]
PARA FoO5H Value to be passed to A register of LH-5803
: (7005H)
PARXL FOO6H Value to be passed to XL register of LH-5803
{7006H)
PARXH FOO7H “Value to be passed to XH register of LH-5803
(7007H) : -’
PARYL FOO8H | Value to be passed to YL register of LH-5803
| (7008H)
PARYH i FOOSH Value to be passed to YH register of LH-5803
| (7009H)
+
PARUL FOOAH Value to be passed to UL register of LH-5803
{700AH)
PARUH ! FoOBH Value to be passed to UH register of LH-5803
‘ {700BH)
PARPCL FOOCH Entry address of a called subroutine {low byte)*3
(700CH)
PARPCH FOODH Entry address of a called subroutine {high byte)*3
(700DH)
PARBAN FOOEH Bank of a called subroutine*4
{700EH) |

OTHER FUNCTIONS AND PRECAUTIONS

%1: The addresses are those viewed from SC-7852. Those enclosed in brackets
are the addresses viewed from LH-5803.
%2: CMDZ (operation mode) must be either 20H or 30H.
CMD2Z=20H: When control is moved to LH-5803, no parameters are passed
to the registers of LH-5803.
=30H: When control is moved to LH-5803, the values set in PARA to
PARUH (i.e., FOO5H to FOOBH) are passed to the registers of
LH-5803.
%3: The entry address must be an address viewed from LH-56803.
*4: PARBAN=00H: PV
=01H: PV-

Return When the LH-5803 machine language subroutine is completed and control
returns to SC-7852, the contents of the LH-5803's registers are ;tored in memory.
When the operation mode is CMDZ=20H i

Address Contents
FOO5H Content of A register of LH-5803
FO04H Content of STATUS(T) register of LH-5803

When the operation mode is CMDZ=30H

Address Contents
FOO5H Content of A register of LH-5803
FO04H Content of STATUS(T) register of LH-5803
’ FoO6H Content of XL register of LH-5803
FOO7H Content of XH register of LH-5803
FOO8H Content of YL register of LH-5803
FOO9H Content of YH register of LH-5803
FOOAH Content of UL register of LH-5803
FOOBH Content of UH register of LH-5803

Affected Register All registers

5.15 COMPATIBILITY WITH PC-1500

The BASIC interpreter of PC-1600 is basically compatible with programs written for PC-1500/PC-1500A
and compatible with peripheral devices for PC-1500/PC-1500A, although there are some restrictions.

OTHER FUNCTIONS AND PRECAUTIONS

-

{1/ Restrictions in running a BASIC program written for PC-1500/
PC-1500A

1. 7o run a BASIC program written for PC-1500/PC-1500A in the same conditions (such as the single
iine display) as when run on PC-1500/PC-1500A, set the PC-1600 in MODE 1 before executing the
g:regram.

= To use the PC-1600 in MODE 1, the foliowing conditions must be satisfied:

-2 A RAM module of more than 16 KB must not be installed in siot 1 and any RAM module must not
be installed in slot 2. However, if a RAM module is used as a RAM disk, CE-1600M can be
installed in slot 1 and CE-1600M or CE-161 can be installed in siot 2. In this case, the formatting
of a RAM disk (INIT “Sn:”,“F"”) must be done in MODE 0.

% Soeme BASIC command names are different between PC-1600 and PC-1500/PC-1500A.

T
PC-1500/PC-1500A command names PC-1600 command names

LCURSOR TAB
LINE LLINE
CALL ; XCALL
POKE | XPOKE »
PEEK XPEEK
POKE# XPOKE#
PEEK# XPEEK#

When you enter a BASIC program text written for PC-1500/PC-1500A from the keyboard, change
tite command names as described above.

& When you load a BASIC program written for PC-1500/PC-1500A from a cassette tape recorder,
the PC-1500/PC-1500A command names are automatically rewritten to the corresponding
#C-1600 command names, except for LCURSOR. In this case, after loading the program, rewrite
“LCURSOR"” to "TAB".

»ading a BASIC program written for PC-1500/PC-1500A from a cassette tape recorder

~# Yhen the CE-150 or CE-162E cassette interface is used, you can load a program.

% ‘When the CE-1600P cassette interface is used, you can load a prograrﬁ in the MODE 1 but you
cannot load data.

AT command

ihe PC-1500/PC-1500A BASIC, you can specify TIME=0. In the PC-1600 BASIC, however, TIME=0
it result in an error.

Saveral new reserved words (NAME, AS, XOR, etc.) have been added to the PC-1600 BASIC. If
& words are used as a variable name in a PC-1500/PC-1500A BASIC program, change them to
siner non-reserved words.

fiine language program may not run properly on the PC-1600.

= PC-1500A memory area from 7C01H to 7FFFH is used as the system work area in the PC-1600.
. 2 PC-1500A BASIC program using any memory locations between 7C01H and 7FFFH cannot
sn the PC-1600.

x #rray variabie cannot be used for the assignment variable of an INPUT statement which is to be
rfarmed to CE-158.

2

OTHER FUNCTIONS AND PRECAUTIONS

(2) Restrictions in using a peripheral device for PC-1500/PC-1500A

1. RAM module
The following RAM modules can only be installed in the memory slots.
Memory slot 1: CE-1600M, CE-161, CE-159, CE-155, CE-151
Memory slot 2: CE-1600M, CE-161
2. CE-150, CE-158, CE-162E
e Use in MODE 0
a) LLIST, CSAVE, CLOAD, CSAVEM and CLOADM cannot be executed to these peripheral
devices.
b) If a command with a variable other than a fixed variable specified in the operand is executed
to these peripheral devices, the command will result in an error. For instance,

LPRINT A1
this command will result in an error. Change this to the following:

A=A1
LPRINT A

¢} TERMINAL and DTE commands cannot be used to CE-158.
e Use in MODE 1
Execution of a command to CE-150, CE-158, or CE-162E is effective only in the scope supported
“in the PC-1500/PC-1500A BASIC. For instance,

LPRINT TIME$

this command will result in an error since TIME$ is not supported in the PC-1500/PC-1500A
BASIC.
3. CE-153
For the use of CE-153, see section 5.12 “CE-153 CONTROL UTILITY". The utility program which
comes with CE-153 cannot be used on the PC-1600.
4. Differences between CE-150 and CE-1600P
@ Since the printable area is different between these printers, the format of the printout may differ.
(You can change the printing area by PCONSOLE “LPT1:” command and PAPER command.)
® CE-150 has two remote control terminals, while CE-1600P has only one.

OTHER FUNCTIONS AND PRECAUTIONS

5.16 PRECAUTIONS FOR APPLICATION PROGRAM
DEVELOPMENT

The IOCS routines covered in this manual will not be changed even when the system software is
revised in the future. Therefore, when you develop a machine language program for the PC-1600, it is
recommended to write it using the I0CS calls.

There are a couple of versions of PC-1600 BASIC interpreters and they are different in the minor
specifications. When you develop a program using the BASIC, keep the following rules so that the
program you make can be compatible with all these versions.

{1} USING format

To print a numeric value in the exponent format using a USING specification, the number of
characters specifying the exponent part must be 2.
Example: USING “##.####/N\"

(2) INPUT “<message>"; <variable> statement
Avoid the end of the message being displayed at the right most column on the screen.

(2) INPUT statement

To specify an input position for an INPUT statement by CURSOR statement, execute a CURSOR
statement before each INPUT statement.
Example: 100: CURSOR 10,1 s
110: INPUT “A=";A '
120: CURSOR 10,1
130: INPUT “B=";B
{

If an array variable or @ is used for the assignment variable of INPUT statement, the subscript must
not be specified by an expression that inciudes a string.

(4) Addition of string data

When adding string items, each item must not consist of a function that contains a string constant.
For instance,

B$="ABC”+STR$ LEN“XYZ"
should be written in the following two lines:

A$=STR$ LEN"XYZ"
B$="ABC"+A$

(8) LINE statement

When a LINE statement is given with the dot toggle parameter of X and the option B, the corners of
2 box may not be displayed on or off properly.

1014

OTHER FUNCTIONS AND PRECAUTIONS

{(6) WAKES$(0) statement

To disable the wakeup function by using an WAKE$(0)=" " statement, do as follows:
Example: 100: A=LEN ALARMS$

110: WAKES$(0)=" "

120: IF A=0 LET A=A: ALARMS$=""

In this example, the program checks whether the alarm function is on before executing WAKES$(0)=
“ v After execution of WAKES$(0)=" ", the program resets the alarm function.

(7) CALL statement |
When a CALL statement is executed with a string variable, if the machine language program is to pass
a null string back to the string variable when returning to the calling BASIC program, the null string

must be expressed as a 00H code of length 1.

(8) XCALL statement

If you want to give a parameter of XCALL statement by a variable, use a fixed-or a simple variable
only.

(9) DIM statement

When declaring a two-dimensional array variable, the subscript must not exceed 254.

(10) LLINE/RLINE statement (to CE-1600P)

When executing a LLINE or RLINE statement, be sure to specify a line type.

(11) CSIZE statement (to CE-1600P)
If you change the character size to a larger one by CSIZE statement when the printer is in the text
mode and the pen is at a position other than the left end, ensure the correct pen position by executing
the appropriate LCURSOR statement.

{12) PZONE “LPT1:” statement (to CE-1600P)

In the text mode, when you specify a print zone length by a PZONE “LPT1:” statement, the zone
length (characters per zone) must be given such a value that an integer multiple of the zone length
equals the current line length (characters per line).

{13) PCONSOLE “LPT1:” statement (to CE-1600P)

When a left margin has been set by a PCONSOLE “LPT1:” statement, if the number of characters to
be printed on a line is less than or equal to the value shown in the table below, you must append to
the characters as many spaces as the total number of characters includi'ng these spaces becomes that
value plus 1 before performing CR+LF operation.

Character size No. of characters
CSIZE 1 3
CSIZE2to 5 1

109

OTHER FUNCTIONS AND PRECAUTIONS

(14) LET statement
Do not use a LET statement to assign a value to a system variable (TIME, TIMES$, DATES$, ALARMS,
WAKES$).
Example: LET TIME=102513.45 (Not allowed)

4Nnn

108

WORK AREA USED FOR BASIC

6.1 OVERVIEW OF WORK AREA

The PC-1600 uses a work area of 4 KB, from FOOOH to FFFFH of bank 0 viewed from SC-7852 (or from
7000H to 7FFFH viewed from LH-5803). The work area consists mainly of five blocks from block A to
block E as shown in the table below.

Block | Address (viewed | Address (viewed. Contents
name| from SC-7852) from LH-5803) {Z-80 address)
FOOOH 7000H
FOSCH
10CS work
FiB2H
Interpreter work I
F21DH :
A Edit buffer (256 bytes)
F31DH
Interpreter work II
F3C7H -
Default FCB (313 bytes)
F500H
FSFFH 75FFH Z-80 stack area (256 bytes)
F600H 7600H Same usage as for PC-1500/PC-1500A display area I

PC-1500/PC-15600A F650H
Fixed variables area (E$ to O$)

F700H

8 PC-1500/PC-1500A display area II
F750H
F7FFH 77FFH Fixed variables area (P$ to Z$)
F800H 7800H Same work area and
C usage as for PC-1500/
FBFFH 7BFFH PC-1500A
FCOOH 7CO0H RAM file work
D FCBOH
FF20H Interpreter work III
E FF21H . 7FFFH Reserved by system
FFFFH

Blocks A to E are used for the following purposes.

Block A: This block is used for the I0CS, interpreter, default FCB, and Z-80 stack. {Extended for
PC-1600)

Block B: This block is used in the same way as for PC-1500/PC-1500A, and consists of two parts:
® PC-1500/PC-1500A display memory space area
e Fixed variables (E$ to Z$) area

Block C: This block is used in the same way as for PC-1500/PC-1500A, and consists of five parts:

@ LH-b803 Stack area .ouviammustivmmseraimvesissine F800H to F84FH
® Fixed variables area: At0Z ...ccvrvrninvvnninscenneenns FO00H to FOCFH
AStoDS$..o, F8COH to F8FFH

® Arithmetic operation Workcoccvviiinnnineccrevenenne FAQOH to FA37H
o Buffers: String bufferccccccvinrveriierice e, FB10H to FB5FH
Output buffercccovvevvirvvvnninnernnienan. FB60H to FBAFH

Input buffer ..o FBBOH to FBFFH

e Interpreter work

Block D: This block is used for the RAM file work, etc. (Extended for PC-1600)

Block E: PC-1600 system reserved area, which will be used by CE-1FO1A (barcode pen reader
software)

i0a

WORK AREA USED FOR BASIC

aiote: Since the block C is used in the same way as for PC-1500/PC-1500A, bear the following points
in mind.
® A 2-byte data is written in the order of the high byte and the low byte.
® The addressing uses an address viewed from LH-5803 (the MSB of almost all LH-5803
addresses is “0”.) Thus, when viewed from SC-7852, the MSB of each address is inverted.

5.2 EXPANSION OF WORK AREA AND BUFFER

The standard work area of PC-1600 is from FOOOH to FFFFH, however, it can be expanded to the lower
address direction (down to CO00H) in the following cases:

When a peripheral device is connected

& When a buffer is explicitly expended by the appropriate command

 §“§} Connection of a peripheral device

hen a peripheral device is connected to the PC-1600, the program (ROM) to control the device is
mapped as shown in figure {a) and is loaded into the expanded work area as shown in figure (b).

Fig. (a)
Bank
4] 1 2 3 4 5 6 7
SH00H
L300H
' EXDEV1 EXROM2 EXROM3 EXROM4 EXROMS EXROME6 EXROM?7
{CE-1F01A) | (CE-1600P) | (CE-1600F)
F250H
EXDEV8 EXROMS EXROMA EXROME EXROMC EXROMD EXROME
{CE-1600P} | (CE-1600P)
S00H
L000H
{Bank and address viewed from SC-7852) 4

107

WORK AREA USED FOR BASIC

1) Fig. (b)
COO00H
Variables
XX00H
PTRGD | . A buffer whose size is determined by
File buff ’ the number of files (n) specified by
re.nurer MAXFILES statement {313 X n bytes)
is reserved here.
PERFR> [e s When the buffer size is specified by
Communication buffer INIT "COMnN:"” statement, the buffer is
PTRE [reserved here.
Work area for EXROME
PTRD &>
Work area for EXROMD
PTRC >
) Work area for EXROMC
PTRB D>
Work area for EXROMB
PTRA D>
Work area for EXROMA
PTR9 >
Work area for EXROMS 3
PTR8 > - ~
PTR7 D> Warksmree foriEXEOMS Work areas for 14 ROM areas
Work area for EXROM? shown in figure {a)
PTRE D>
Work area for EXROM6
PTRS > B ST Work area for CE-1600F (1,065
oTRA b Work area for EXROMS bytes)
Work area for EXROM4
PTR3 D>
Work area for EXROM3 I S Work area for CE-1F01A
PTR2 D>
Work area for EXROM2
PTR1 D>
Work area for EXROM1
FOOOH
Standard work area
FFFFH -

As shown in figure (a), there are 14 memory blocks for the peripheral devices (8 KB per block). The
following five blocks among these 14 blocks are used for particular peripheral devices:
EXROM3: Used for CE-1F01A '
EXROMS5: Used for CE-1600F
EXROMA4: | Used for CE-1600P (The work area is not expanded even when CE-1600P is
EXROMB: } connected. It uses the standard work area.)
EXROMC:
The other nine memory blocks are reserved for future peripheral devices.

(2) Reserving and releasing the work areas and buffers

1. Work area
When the PC-1600 is all-reset or reset or powered on, if there is a peripheral device connected, the
relevant work area is reserved.
The reserved work area is released when you power off the PC-1600 and remove the peripheral
device and power on again. However, the work areas for EXROMS3 and EXROMA are released when
the PC-1600 is all-reset or when the work areas are released explicitly by using the appropriate
commands.

LXaYal

WORK AREA USED FOR BASIC

2. Buffer
; g ALL RESET| RESET |POWER ON
. Expanding command : Releasing command " BB ST
Communication buffer EINIT “COMnN:”, m (m=80)] INIT “COMn:", 0 Released | Released | Released
;M'File buffer MAXFILES=m (m=1) MAXFILES=0 Released | Maintained | Maintained

{3) Pointers to point the work areas and buffers (PTR1 to PTRG in figure
(b) above)

Each pointer points to the starting address of the relevant work area, which is stored in the standard
work area. The following table shows the pointers and the standard work area locations where the
zantents of each pointer are stored (the address data are stored in the order of the low address byte
znd the high address byte.)

Pointer name Locations Pointer name Locations Pointer name Locations
PTR7 FO3C, 3DH PTRE ~ FO4A, 4BH
PTR1 F030, 31H PTR8 FO3E, 3FH PTRF F04C, 4DH

PTR2 F032, 33H PTR9 F040, 41H PTRG FO4E, 4FH
PTR3 F034, 35H PTRA ! F042, 43H
PTR4 F036, 37H PTRB F044, 45H
°TR5 F038, 3SH PTRC F046, 47H
PTR6 FO3A, 3BH PTRD F048, 49H

2 ¢an check whether or not the work area for a particular peripheral device or a buffer is reserved in
following method: First, read the content of the pointer for the work area or buffer concerned, and
< the content of the pointer for the work area or buffer which is reserved (at the higher adjacent
ress) next to the former work area or buffer (if you want to check EXDEV1, use FOOOH.) Then,

pare the contents of these two pointers. If they are different, the work area or buffer concerned is
=rved. If they are the same, it is not reserved.

Work area for EXROMS3

-work area is used for CE-1F01A (the barcode pen reader software). If CE-1F01A is not connected,

e

-zn use this memory area as a machine language program area.

Set A=(size to be reserved), then
execute: CALL &02DD,A

Set A=0, then
execute: CALL &02DD,A

‘ariables area

iables area is reserved in the memory locations lower than xx00H, next to the file buffer. The
iocations from xx00H to the beginning of the file buffer is not used.

the wariables area is reserved in units of 256 bytes, reservation or expansion of work areas and
28s not cause the user area (program and variables areas) to be reduced simply by that

WORK AREA USED FOR BASIC

6.3 WORK AREA MAP

The following shows the work area map used for the BASIC.

Address Name Contents
Fo2D FBNO MAXFILES value
Fo4C FBBP Communication buffer start address (L)
FO4D FBBP v Communication buffer start address (H)
FO4E FCBPTR FCB buffer start address (L)
FO4F FCBPTR FCB buffer start address {H)
FO5C DSPLPTR LCD display start line
FO5D LCDWK1 L.CD work area 1

Bit 0: LCD mode (fixed to “0")

Bit 2: Character generator mode (“0”=PC-1600,
“1"=PC-1500)

Bit 3: Control characters (“0”=Not displayed,
“1"=Displayed)

Bit 4: Cursor blinking speed {“0"=slow, “1"=fast)

FO5E LCDWK2 LCD work area 2
Bit 0: Cursor blinking work area
Bit 1: Interrupt request mask for LCD

FO5F CRSRY Cursor X coordinate

F060 CRSRX Cursor Y coordinate

Fo61 CTRCGA Start address (L) of CG table for control characters

F062 CTRCGA Start address {H) of CG table for control characters

F063 CRTCGB Bank number of CG table for control characters

Fo64 UPACGA Start address (L) of CG table for character codes from 80H to FFH
F065 UPACGA : glt:?_lrt address (H) of CG table for character codes from 80H to
F066 UPACGB Bank number of CG table for character does from 80H to FFH
F067 CRSRST Cursor type “00H"=Cursor display off

"01H”=Underline cursor
“02H"=Square cursor
“03H"=Space cursor

F068 CBLCTR Cursor blinking counter

F079 KEYWK1 Key work area 1

Bit 1: Clicking sound (“0”"=0FF, “1"=0N)

Bit 2: Repeat ("0"=0FF, “1"=0N)

Bit 3: Repeated key ("0"=0Other than special keys,

"1"=All keys)

Bit 4: Repeat delay time {(“0"=1 sec., “1"=0.8 sec.)

Bit 5:

Bit 6: ’

Bit 7: Key code conversion {"0”"=0N, “1"=0FF)
FO7A KEYWK2 Key work area 2
FO7B KEYWKS3 Key work area 3
F182H PITCHX Character pitch value of PITCH command

F183H- PITCHY ‘ Line spacing value of PITCH command

WORK AREA USED FOR BASIC

Address Name Contents
F184H COLORP Bits 0 to 3: Pen color of plotter/printer
' Bits 4 to 7: Must not be changed
F185H WIDTH Characters per line
F187H FLAGA Bit 0: Fixedto 1
Bits 1 to 4: Must not be changed
Bits 5 and 6: Line-feed code specification
bit6 ="1"and bit5 = “1": LF
bit6 = "1”" and bit5 = “0”: CR+LF
bit6 = “0” and bitb = “1": CR
F188H CUsZL Scissoring counter (L)
F189H CUSZH Scissoring counter {H)
F18FH SZXRL X direction right end scissoring area {L)
F190H SZXRH X direction right end scissoring area (H})
F191H SZXL X direction left end scissoring area (L)
F192H SZXH X direction left end scissoring area (H})
F194H INZONE Pen position (Number of characters counted from the left end)
F88FH QUTPUT BUFFER Pointer for the output buffer
POINTER
F890H FOR POINTER Stack pointer for FOR...NEXT
F891H . GOSUB POINTER Pointer for GOSUB
F894H STRING BUFFER Pointer for the string buffer
POINTER
F895H USING F/F USING format (control of decimal point and comma)
F896H USING M Integer part of USING
F897H USING & USING for string
F898H USING m Decimal point of USING
F899H VARIABLE POINTER H
Pointer for variables
F89AH VARIABLE POINTER L
F89BH ERL Error number of the error occurred
F89CH CURRENT LINE H
Current program line number
F89DH CURRENT LINE L
F89EH CURRENTTOP H
Start address of the program of the current line
F89FH CURRENT TOP L
F8AG6H SEARCH ADDRESS H
Address of the line found in the search operation
F8A7H SEARCH ADDRESS L
F8A8H SEARCH LINE H
Line number of the line found after the search operation
F8ASH SEARCH LINE L
F8AAH SEARCH TOP H
Start address of the program block searched
F8ABH SEARCHTOP L

Work area for CE-1600P

WORK AREA USED FOR BASIC

Address Name Contents
FSACH BREAK ADDRESS H
Address where the break occurred
FSADH BREAK ADDRESS L
FSAEH BREAK LINE H
Line number where the break occurred
FSAFH BREAK LINE L
F8BOH BREAK TOP H
Start address of the program block where the break occurred
F8B1H BREAK TOP L
F8B2H ERROR ADDRESS H
Address where the error occurred
F8B3H ERROR ADDRESS L
F8B4H ERROR LINE H
Line number where the error occurred
F8B5H ERROR LINE L
F8B6H ERROR TOP H
Start address of the program block where the error occurred
F8B7H ERRORTOPL -
F8B8H ON ERROR ADDRESS H
Address to which control jumps when an error occurs
F8B9H ON ERROR ADDRESS L
F8BAH ON ERROR LINE H
Line number to which control jumps when an error occurs
F8BBH ON ERROR LINE L
F8BCH ON ERROR TOPH
. Start address of the program block where the error occurred
F8BDH ON ERROR TOP L
F8CO-F8CF | ADOLAR ' Content of variable A$
F8DO-F8DF | BDOLAR Content of variable B$
F8EQ-FBEF | CDOLAR Content of variable C$
F8F0-F8FF DDOLAR Content of variable D$
F900-F907 AVAR Content of variable A
F908-FO0F BVAR Content of variable B
F910-F917 CVAR Content of variable C
F918-F91F DVAR Content of variable D
F920-F927 EVAR Content of variable E
F928-F92F FVAR Content of variable F
F930-F937 GVAR Content of variable G *
F938-F93F HVAR Content of variable H
F940-F947 IVAR Content of variable |
F948-F94F JVAR Content of variable J
F950-F957 KVAR Content of variable K

WORK AREA USED FOR BASIC

Address Name Contents
F958-F95F LVAR Content of variable L
F960-F967 MVAR Content of variable M
F968-F96F NVAR Content of variable N
F970-F977 OVAR Content of variable O
F978-F97F PVAR Content of variable P
F980-F987 QVAR Content of variable Q
F988-F98F RVAR Content of variable R
F990-F997 SVAR Content of variable S
F998-F9SF TVAR Content of variable T
F9A0-F9A7 | UVAR Content of variable U
FOA8-FSAF | VVAR Content of variable V
F9B0-F9B7 | WVAR Content of variable W
FI9B8-FOBF | XVAR Content of variable X
F9CO0-F9C7 | YVAR Content of variable Y
F9C8-FOCF | ZVAR Content of variable Z
FOD1H OPN DV Specification of peripheral device
FOEOH USER COUNTER XH
Counter to specify the pen position X coordinate
FOE1TH USER COUNTER XL
FOE2H USER COUNTER YH
Counter to specify the pen position Y coordinate
FOE3H USER COUNTER YL
FOE4H SCISSORING
COUNTER YH
Scissoring counter for Y direction
FOESH SCISSORING
COUNTER YL
FOE6H ABSOLUTE X direction absolute position counter
POSSITION X
F9E7H SCISSORING
COUTNER XL
Scissoring counter for X direction
FOE8H SCISSORING
COUTNER XH
FOEAH LINE TYPE Line type
F9EBH DOT LINE COUNTER Dotted-line counter
FOECH UP/DOWN Pen up/down state
FOEDH X MOTOR HOLD X motor hold counter
COUNTER
FOEEH PORT C Current motor phase

nano

Work area for CE-150

WORK AREA USED FOR BASIC

Address Name Contents
FOEFH Y MOTOR HOLD Y motor hold counter
COUNTER
FOFOH GRAPH/TEXT Printer mode specification (“255" =Graphics mode, “0" =Text
mode)
FOF2H ROTATE Printing direction specification
FOF3H COLOR Color specification
F9F4H CSIZE Print character size specification
FOEQH ABSXL Pen physical position in X direction (L}
FOE1H ABSXH Pen physical position in X direction {H)
FOE2H OVRXL X direction scissoring counter {L)
FOE3H OVRXH X direction scissoring counter (H)
FOE4H OVRYL Y direction scissoring counter (L)
FOESH OVRYH Y direction scissoring counter {H})
FOE6H SZMYL —Y direction scissoring area {L)
FOE7H SZMYH -Y direction scissoring area {H)
FOESH SZPYL +Y direction scissoring area (L)
F9E9H SZPYH +Y direction scissoring area {H)
FOEAH SRXL Pen position X coordinate in graphics mode where the
coordinate origin is specified by SORGN (Range: —4069 to
+4069. A negative value is expressed as a complement of 2.} (L)
FOEBH SRXH Pen position X coordinate in graphics mode where the
coordinate origin is specified by SORGN (Range: —4069 to
+4069. A negative value is expressed as a complement of 2.} (H)
FOECH SRYL Same as SRXL except this is for Y coordinate
FOEDH SRYH Same as SRXH except this is for Y coordinate
FOEFH MODE Plotter/printer' mode
Bit 0: “0”"=Text mode, "1”=Graphics mode
Bit 1: “0"=Cur sheet, “1”=Roll paper
Bits 2 to 4: Must not be changed
Bit 5: “0”=Printer ready, "1”=Printer not ready
Bit 6: “0”=Pen not in exchange state
“1"=Pen in exchange state
Bit7: “0”=The printer hardware is not initialized.
"1"=The printer hardware is initialized.
FOF4H CHR Value set by ROTATE statement
Bits 4to 7: ROTATEOto 3
Bits 0 to 3: DIRECTION {pen movement) 0 to 3
FOF5H CSIZEP Value set by CSIZE statement
Bits 010 3: CSIZE1to 9
Bits 4 and 5: Must not be changed
Bit 6: Fixed to “0”
Bit 7: Fixed to “0”
FOF6H LINE Line type
Bits 0 to 3: LinetypeOto 9
Bits 4 to 7: Must not be changed
FO9F7H ZONE Value set by PZONE statement ¢

Work area for CE-1600P

WORK AREA USED FOR BASIC

Address Name Contents

FOF8H PWORK Special work area
Bit 0: “1"=For LLIST, the list is printed in characters of
the special size.
“0”"=Normal mode
Bit 1: “1”=The pen is not lifted up after an LLINE or RLINE
statement is executed. (This state is given when
line type “20" is specified in an LLINE or RLINE
statement.)
“0"=Normal mode
Bit 2: Fixed to “0"
Bit 4: Must not be changed
Bit 5: “1”=The pen is not moved when paper is fed by the
[171 Jkey.
“0”=Normal mode
Bit 6: “1”"=The scissoring in the -Y direction is not performed
when the printer is in the graphics mode and roll
paper is used. :
“0”=Normal mode
Bit 7: Fixed to “0”

FOFFH LOCK LOCK/UNLOCK specification
FBOOH RND NUMBER
FBOTH RND NUMBER
FBO2H RND NUMBER
FBO3H RND NUMBER
For generation of a random number
FBO4H RND NUMBER
FBOSH RND NUMBER
FBO6H RND NUMBER
FBO7H RND NUMBER

NN

on7z

PC-1600 HARDWARE

The PC-1600 has three CPUs and a large memory, however, it has been made very compact with use
of a gate array and a one-chip CPU. The following block diagram shows the PC-1600 hardware
architecture. This chapter describes the details of each hardware component of the PC-1600.

PC-1600 block diagram

HD61203 (S))
LCD
—— C. DRIVER LCco
s
Y
? HD61102 HD61102 L H-5803
" LCD S. DRIVE LCD S. DRIVE MAIN CPU
B
u
s . $C7852
LR38041 L
32K8 ROM 8KBRAM] MAIN CPU
s GATE ARRAY] 3 e 1
L [L =
)
T
1
TC8576F LU57813P
3
5 UART SUB-CPU RESET
g
2
s I ON I
4 O KEYBOARD

BX7269W O

CONVERT = ANALOG IN

ONWN ~0T

7.1 CPU

The PC-1600 has three CPUs: two main CPUs and one sub-CPU. The two main CPUs are SC-7852
(equivalent to Z-80A: 3.58 MHz clock) and LH-5803 (equivalent to LH-5801: 1.3 MHz clock). The
sub-CPU is LU-57813P, which is a 4-bit CMOS processor of 307.2 KHz clock.

7.1.1 Specifications of SC-7852
SC-7852 has been developed specially for PC-1600 and contains a Z-80A equivalent circuitry and

interfaces.
(1) Internal block diagram
SC-7852 is a one-chip CPU consisting of a Z-80A equivalent circuitry and interfaces.

[alale]

PC-1600 HARDWARE

SC-7852 Internal Block Diagram

3.58MHz

CGC

Z-80 BUS [J=— z-80 LH I/F _,_,[ﬂ :‘_ni:_g\éé:;u 2

LH-56810 interrupt Memory
1/0 control
compatible control control
Keyboard Timer Main unit RAM UART
Buzzer RS232C SLOT1 ste
Cassette System bus SLOT2 '
Main unit ROM

As shown in the block diagram, this chip contains Z-80A, clock generator, memory select circuit,
interrupt control circuit, /0 port, and interface circuit for LH-5803.

(2) Terminal signals
SC-7852 is a 100-pin LSI, having several terminals for those signals that Z-80A does not have.
The table below describes the terminal signals of SC-7852.

onn

PC-1600 HARDWARE

SC-7852 Terminal Signals

Pin Active .
No. Symbol In/Out \evel Function
95~ KINO~KIN7 vin Low (1) internally pulled up to VCC by the resistor (200K ~ 5000K).
100~2 (2} T input = Low (normal made) keyboard input.
A key in the low input line is pressed.
{3) T input = High {emulation mode).
Used for connection of the 2-80 ICE.
3 LHWAIT Out High Wait output to the LH-5803.
The signal goes high in one of the following:
(1) When the WAIT input is at a high level.
(2) When the LH-5803 accesses **0*H or 8000H~ FFFFH of the ME1 space, it goes
high for one cycle time to insert one wait.
(3} When the Z-80 is running with the LH-5803 at halt.
4 ¢0S In I l l LH-5803 basic clock {1.3MHz).
This clock is used for the sync signal of the internal LH-5810 corresponding port and
generation of the LCD CLOCK {217KHz).
5 PT Qut Memory bank signal.
6 PU Out Memory bank signal.
7 PVOUT Qut Memory bank signal.
8 PVIN 4 In LH-5803's PV signal input.
As PV is kept in the floating state when the Z-80 is operating, it is internally pulied
down by the resistor.
9 WR In/Out Low {1) When the Z-80 is in operation, the Z-80's WR is a direct output on this line.
{2) When the LH-5803 is in operation, it becomes an input to enable R/W for
the LH-5803.
10~25 | A15~A0 4 in/Out {1} When the Z-80 is in operation, the Z-80 address bus is an output on this line.
{2) When the LH-5803 isin operation, the LH-56803 address bus is an input on this line.
26~33 | DB7~DB0 In/Out Data bus.
34 {ORQ 4 |n/Qut (1) When the Z-80 is in dperation, the Z2-80 10RQ is an output on this line,
{2) When the LH-5803 is in operation, the LH-5803 ME1 is an input on this line,

35 MREQ 4 in/Cut {1} When the Z-80 is in operation, the Z-80 MREQ is an output an this line.

(2) When the LH-5803 is in operation, the LH-5803 MEO is an input on this line,

36 RD in/Out {1) When the Z-80 is in operation, the 2-80 RD is an output on this line,

(2) When the LH-5803 is in operation, the LH-5803 OD is an input on this line.

37 WAIT ain High WAIT input to the Z-80 and LH-5803.

Pulled down internally by a resistor,

38 LHA90 Qut Among the RAMs {the bank of the spaces COO0H ~ FFFFH) connected to the RAM3,
itisan inﬂt to the address AS of the RAM of EQO0H~FFFFH (the side A13A is
input to CE1).

(1} When the Z-80 is in operation, “LHA90 = A9"' is established.

(2) Exceptthat “LHAS0 = high" is established when the LH-5803 accesses 7400H~
744FH and 7500H ~754FH.
In other words, when the 1.H-5803 tries to access 7400H~ 744FH and 75004 ~
754FH, it actually accesses 7600H~764FH and 7700H~774FH.

PC-1600 HARDWARE

Pin Active .
No. Symbol in/Qut tevel Function
39 ™1 Out Low {1) When the Z-80 is in operation, the Z-80 M1 is an output on this line.
(2) When the LH-5803 is in operation, the signal created from the OPF signal of the
LH-5803 is sent on this line.
40 RFSH Out Low Refresh signal.
{1) The Z-80 RFSH signal is on this line.
(2) When the LH-5803 is in operation, the signal created from the OPF signal of the
LH-5803 is sent on this line.
41 vDD VCC
42 I0E Out High This signal is issued when the LH-5803 tries to access *¥00H~**0FH and 8000H~
OFFFH of the ME1 space, When this signal is sent out, one wait is sent to the
LH-5803. In terms of timing, the signal is sent with a half clock delay on the ME1,
oos | [L [
_ L L
t
ME1 | S ZE—,
LHWAIT I }
{OE I L_
43 CSs001 Out Low Z-80 control ROM select signal.
0000H~7FFFH memory space (bank 0}.
44 CS123 7,0ut Low (1) Z-80 control ROM select signal.
’ 8000H~BFFFH memory space {bank 6).
{2) LH-5803 control ROM select signal.
CO00H~FFFFH memory space.
45 CS24 Cut Low Z-80 control ROM select signal.
4000H ~ 7FFFH memory space (bank 3).
46 LHS3 Qut Low Memory select signal.
47 LHS2 v Qut Low Depending on the state of bit "'6" of 1/O 3CH, the memory space selected
48 LHS1 v Out Low differs.
b8 =0 b6=1
LHS1 ABO0H~AFFFH (bank 0} BOOOH~B7FFH {(bank 0)
LHS2 BOOOH~B7FFH (bank 0) A800H~FAFFH (bank 0)
LHS3 B8OOH~BFFFH (bank 0} AOOOH~A7FFH (bank 0)
LHS1 and LHSZ are pulled up internally.
LHS3 needs to be pulled up externally. {pulled up externally.})
49 RAM3 N Out High Memory select signal {internal 16KB RAM).
CO00OH~FFFFH (bank 0).
50 RAM2 Out Low Memory seifect signal {S1:},
8000H~BFFFH (bank 0, bank 1).
8000H~BFFFH (bank 2, bank 3).
51 RAM1 Out Low Memory select signal {S2:}).
8000H~BFFFH {bank 2, bank 3).
52 SLCT In High When this signal is at low, output of the memory and 1/0 select signal is
disabled.
Disabied sngnals are: CSOO1 ‘TS§123, €524, RAM3, RAM2, RAM1, 10E, 10SU, KAZ
KA1, KAD, C/D, and {ORP.
This input is an output to the subcontroller and is at a high level when the system is
on.

PC-1600 HARDWARE

i Acti i

;'0". Symbo! in/Out I:V:Ile Function

53 KA2 Out Low Goes iow when the Z-80 1/O 28H ~2FH is written.

54 KA1 Out Low Goes low when the Z-80 1/O 28H~2FH is read.

55 KAO Out Low Gaoes low when the Z-80 1/O 60H~B6FH is accessed.

56 CKoO Out A 217KHz ¢0S output. This signal is supplied to the HD61203 (S) LCD driver.
This signal is issued only when bit b4’ of the 2-80 I/O 37H is at 1"’ Bit
b4 is at ‘0" at power-on, but turns to “1’’ in the power-on routine to activate the
LCD.

57 1ORP Cut Low Goes low when the Z-80 reads 33H of 1/0.

This signal is used by the Z-80 to read the return data from the LU57813P,

58 c/b Out High Goes high when the 2-80 writes 3DH of 1/0.

Data are latched at a low to high transition of C/D. When the signal rises with a half
clock delay from IORQ, the data bus is stable.

59 1osu Out Low Goes low when the Z-80 1/O 20H~27H is accessed.

This signal is used for selection of the TC8576F UART.

60 E Out High Goes high when the Z-80 1/O 40H~5FH is accessed. P
This signal is used to interface with the 6800 series LS| and is connected to the
HDE1202 LCD driver input,
This signal is issued with a half clock delay slower than IORQ.

61 DMFO Out High L.H-5803 memory select signal.
This signal goes high when the LH-5803 accesses the memory.

62~70 | PAO~PA? v In/Qut Corresponds to the port PA of the LH-5810 1/0 port.

This signal is used for the key strobe signal. To restore the original state of the low-
fqrced strobe signal, this signal must be turned high and then set in the input mode.
The input signal is pulled up internally.

65 VSsSs 0V

71 PB2 vin Used for the cassette tape to reproduce a signal.
Pulied up internally. .)

72 PBS v in/Out Used for an input port by the PC-1600.

Input to this line is a 1/64 second pulse which is issued from the LU57813P sub-
controller. Pulied up internally.

73 PB6 v In/Out Used for the key strobe signal,

Application is the same as for the PA7~PAO.
Pulled up internally.

74 PB7 Aln Receives the state of the]BREAK/ON]key sent from the subcontroller.
Puiled down internally.

75 PC6 Out Used by the Z-80 for a beep generation.

The foltowing circuit is internally composed in the LSI.

PB2 ——

PC6/'—

PCe

PCT7/

Sbg —
When either the PB2, PC6’, PC7*, or SDO goes low, PC6 becomes high,
To drive the buzzer, one of signals issues a pulse.

o ¥at

PC-1600 HARDWARE

Pin Active .
No. Symbot in/Out level Function
PB2: Cassette reproducing signal,
PC6’: Beep disable signal.
PC7’: Cassette recording signal {(PC-1600).
SDO’': Cassette recording signal (PC-1500).
76 SDO Out Cassette recording signai output.
sSDO’
PC?’
SDO' is the cassette recording output by the CE-150.
PC7’ is the cassette recording output by the CE-1600P.
77 ELH Out {1} A low state of this signal indicates that the LH-5803 is in operation.
{2) A high state of this signal indicates that the Z-80 is in operation,
78 PCSTB In/Out (1) Goes into the input mode when reset. This current state js latched in
the PB3 fiip-flop.
In PC-1600, this terminal is pulled up through an external resistor.
{2} Goes to the output line in the normal mode.
The signal goes high when the Z-80 writes 18H or /G or the LH-5803 is FOO8H
of the ME1. This signal is not used in the output mode with the PC-1600.
?9 RSTIN In Low A reset input to the SC7852. This signal is forced low for 30 milliseconds by the sub
CPU when ACL or RESET is issued or at power-on.
80 IRQ aln High An interrupt to the CPU (Z-80, LH-5803).
This line is input as an interrupt request from the PC-1500 peripherai.
81 | INTO In High An interrupt to the CPU.,
This line is input as an interrupt request from the T8576F.
82 INT1 vin Low An interrupt to the CPU.
This line is input as an interrupt request from the PC-1600 peripheral.
Pulled up internally.
83 INT4 In] An interrupt to the CPU.
An interrupt is sent to the CPU at a high to low transition. This line is input at a
1/64 second pulse from the sub CPU. It is externally shorted with PB5.
But, the sub CPU output, which is a P-ch open drain, is pulled down by the external
resistor to assure a low output,
84 INTE aln High An interrupt to the CPU.
This line inputs the output from the sub CPU.
85 PCTRL Out Low At the time the power-off command is sent to the sub CPU, the sub CPU turns the
power off {active low).
This signal goes low after the Z-80 compiletes the following:
(1) 11H written to 1/O 37H
{tl) OUT (38H), A
{11) HALT
86 CLK Qut Z-80 clock output. 3.58MHz for the PC-1600.
87 T Afn (1) it is in the normal mode when a low signal is received and the Z-80 is operating
normally. Pulled down internally.
{2) It is in the simulation mode when a high signal is received. The 2-80 bus is in the
floating state, and the Z-80 {or Z-80 ICE)} can be connected externally.
88 X0ouT Qut The 3,58MHz Z2-80 clock is supplied when the oscillator is attached across these lines,
89 XIN In
90 vDD Power input to the high side (4~5.5V).

N4 o

I

PC-1600 HARDWARE

(3) /O map

Similar to Z-80A, SC-7852 has a 256-byte I/O space from 00H to FFH. The table below shows the
/O map of SC-7852.

1/0 Map of SC-7852

O0H Use prohibited,
OFH
10H Port corresponding to LH-5810 (LH-5811) contained
1FH in the SC7852 {not synchronized with $0S).
20H TC8576F UART selection
27H
Sbress | addres | Fead Wwite
28H §2 {slot 2)
2FH P - 30H #A030H IOR MOD |IOW MOD
j . 31H #A031H IOR MAP 1OW MAP
g(‘):: SC7852 internal LSI control register port 5 e BE T BWES:
33H #A033H IOR P w, 1OW CDF
40H System reserve | 34H #A034H | IOR LHMSK | IOW LHMSK
4FH \\ 35H #A035H IO0R ZMSK 10W ZMSK
50H HD61102 {IC2), {IC3) ‘\ 36H #A036H IOR ARRS IOWCL1
58H ™ Ds1102 (1IC3) v 37H #A037H | IORKB IOW CGC
L “can DeT102 1C2) “ CGC register write
Y 3sH #A038H 1OW STP
System reserve \ 39H #A039H {OW VCT
GO €2 1lot2) 4 3AH #A03AH 10W KA Not used
6FH A T #A03BH 10W KS Not used
\ 3CH #A03CH IOWSLT
“ 3DH #A03DH IOW C/D
v 3EH #A03EH
784 | CE-1600F V3R #A03FH
7FH Note: When writing to an /O space between 30H and 3DH, if the
80H CE-1600P setting is incorrect, the PC-1600 does not operate properly.
83H R
84H Reserved for future extension NOTES:
(Rreg): Indicates the contents of the memory (ME1
accessed) which are implied by the LH-5803
CPU internal register (R register).
BFH .
[1: Vacancy in the Z-80 1/O map which is not used
at present.

Note: In the machine cycle, 1 wait is automatically inserted.

&dain CPU 1 (LH5803) pin description

PC-1600 HARDWARE

7.1.2 Specifications of LH-5803
£H-5803 is an 8-bit C-MOS CPU, which is an upper version of LH-5801. Therefore, LH-5803 supports
almost all LH-5801 machine language instructions, except that the SDP, RDP and OFF instructions of
£.H-5801 operate as a NOP instruction in LH-5803.

The table below describes the terminal signals of LH-5803.

Pin

No. Symbol

In/Out

Active
tevel

Function

RESET

in

CPU reset input. A high on this line causes the reset. The contents of the address
FFFEH are transferred to the PH register and the contents of FFFFH to the PL
register. When the reset input changes from high to low, the program starts toc execute
from the address set in the program counter.

2 {NC)

X 8RO

Bus request. Connected to ELH of the SC7852 output.

& i BFI

BF flip-flop output {(BFO) and input {BF). o

The BF fiip-flop is reset by the OFF command of the CPU.

It can be reset when the BF1 is set high.

The BFO is at a low level when the BF flip-flop is active and at a high level when not
active.

The contents of the BF flip-flop are protected as long as VGG is in supply.

Because VGG is VCC in the PC-1600, this function is not used and VCC is used for
an input.

VGG

Power supply {system’s VCC input).

BFO

Out

See Pin No.4.

OPF

Out

Op code fetch signal which appears when the CPU fetches the OP code.

OPF is the signal that is issued only when the operation code is fetched and is not there-
fore issued in fetching the address data, immediate data, and the second byte of a 2-step
command. !

BAK

Out

Bus acknowledge signal.

When BRQ is set at a high level, the CPU issues a high BAK state in response to it.
When BAK is at a high level, the CPU sets the address bus {ADO ~ AD15), data bus
(DO~D7), MEO, ME1, R/W, and OD in high impedance.

vCce

Power supply {(system’s VCC input).

PC-1600 HARDWARE

I'\,Ii:. Symbol In/Out Algfli:‘e Function
10 VGG Power supply (system’s VCC input).
<

11 VM in LCD backplate power supply input.

12 VDis in LCD backplate power supply input. Not used by the PC-1600.

13 VA In LCD backplate power supply input.

14 ve In LCD backplate power supply input.)

15 NMi in Non-maskable interrupt input. A high input state causes an interrupt to the CPU.

The CPU unconditionally accepts the raguest and starts to execute the interrupt routine
from the address whose high order address is represented by the contents of the address
FFFCH and the low order address by the contents of FFFDH.

16 Ml In Maskable interrupt input. When the {E flag {Interrupt Enable) is set on, an interrupt
request is caused by a high M1 input state, and the CPU starts to execute the inter-
rupt routine from the address whaose high order address is represented by the contents
of the address FFF8H and the low order address by the contents of FFFGH,

17 HIN in fnput to the counter by which the LCD and backplate signals, HO~H7, are generated.
No&mally connected to the HA pin of the CPU. With the PC#i600, this function is not
used.

18 HA Qut CPU internal divider output through which is delivered the basic clock for the LCD
driver and connected to HIN and the segment signal generator LSI.

19 DispP Cut LCD display on/off control signal output.

Can be set and reset by means of a command. With the PC-1600, this function is not
used.

20~27 | H7~HO Qut LCD backplate signal output.
When the LCD is driven by the backplate signal and the segment signal, the backplate
signal is issued by the CPU,

28 oD Out Output disable signal. When OD is at a high level, the CPL} disables the data output
onto the data bus for the external device. This signal is issued when writing data in the
memory.

¢0S /_—_/——_m
ADO~ : :
o X 0 -
MEO orM
ME1— ; :
R/W ____/—_———
0D >\ . / i \<
‘ 1 1
Do~D7 — CPU intornal data
' Memory read cycle Memory write signal
29 MEQ Out Memory enable signal. This signal is enabled to directly access the 128KB memory area;
30 ME1 Qut MEO accesses a 64KB area and ME1 accesses a 64KB area.
The memory area accessible by the program counter P and stack pointer S is 64KB,
for MEO is used by the fetch and stack commands. For accessing data, both MED
and MET memory areas can be accessed by the CPU command.
31~38 | bo~D7 In/Out Bidirectional data bus which is used to write data in the external memory or to read
data from the external memory.
39~46---A0~A7 Out Address bus which may be in three states. Goes to high impedance with the BRQ {bus
request} signal. It is possible 1o access the memory area of 64KB. 1t is also possible to
access the memory of 128K8 using the MES or MET signal. ’ 7]

PC-1600 HARDWARE

47 GND Power supply.

48 A8 Out Address bus {see Pin No.39).

49 VGG Power supply.

50~56 | A9~A15 Out Address bus (see Pin No.38).

57 (NC) =

58 R/W Qut Memory write signai. With a low R/W state, the data in the CPU are sent on the data
bus.

59 P¢ Out External latch clock. With a high state of this clock, the contents of the accumulator are
transferred onto the data bus. Use of the latch IC permits its use as the output port (see
the ATP command).

60 PV Out These are the CPU internal flip-flop output pins (PU, PV).

61 PU Out There are commands to set and reset PU and PV,

62 @0S Out The clock, in the same phase as the CPU internal basic clock, is on this line to supply
clock pulse to the external system,

When a 2.6MHz crystal is connected across XLO and XL1, a 1.3MHz clock is supplied.

63 XLO In Crystal connection pins. XLO is an input and XL1 is an out;;ht,

64 XL Qut inside the CPU, the clock is divided in half, When a 2.6MHz crystal is connected, the
machine cycle within the CPU is at 1.3MHz,

65 WAIT in CPU wait signal. When this input is high, the CPU’s internal operation clock ¢’ stops
and the CPU therefore stops executing a command. When it resumes a low state, the
CPU starts to execute a command.

Internal basic clock / \ / \ / \ / \ / \
¢0S
CPU operating c|ock/———\ /-—\ /—\
[
WAIT input — \
CPU internal f \
flip-flop WA
NOTE:
WA is the CPU internal flip-flop for WAIT. At a high to low transition of the clock
¢0S, input of WAIT is accepted.
The CPU operating clock ¢ stops when WA is at high; the CPU halts a command
execution temporarily as a result.
66~73 | IN7~INO In input port. The CPU can send the signal input on the INO~IN7 to the CPU accumulator
as an 8-bit data.
It has an internal pull-up resistor. When not connected, the CPU assumes the line to
be in high impedance,
74~76 | (NC) -

NOTE: NC: No Connection

PC-1600 HARDWARE

7.1.3 Specifications of LU57813P
LUB7813P is a 4-bit CMQS CPU. This section first describes the functions of LU57813P, then shows the
table of LU57813P terminal signals.

{1)

(2)

(3)

(4)

(5}

(8)

7
(8)

PC-1600 main power ON/OFF control

LU57813P turns off the power of the PC-1600 by receiving a command from the main CPU, and
turns off the power when the key is pressed.

Timer management

LU57813P supports one wakeup timer and two alarm timers {(counted up every 0.5 second) and
manages the calendar clock.

Battery voitage monitoring

LUS7813P has an A/D converter, with which LU57813P monitors the supply voltages of the
PC-1600 main unit and the peripheral devices. LU57813P turns on the il symbol on the LCD
when the supply voltage goes below a certain level.

Analog input

LUB7813P converts an analog voltage input at the analog port of the PC-1600 into a digital value
and passes the value to the main CPU.

Key click sound generation #

If the key clicking is enabled, when a key input occurs, the main CPU sends a command to make
LUB7813P generate a click sound.

Reset signal handling

LU5S7813P manages a reset signal from two reset switches (one on the rear side of PC-1600 and
the other on the rear side of CE-1600P). Receiving a reset signal from one of the reset switches,
LUB7813P sends a reset signal for 30 ms to the system.

Receiving a Cl signal from RS-232C, LU57813P turns on the system.

Timer (1/64 second]} signal output

PC-1600 HARDWARE

Sub CPU (LU57813P) pin description

Pin Active | State .
No. Symbol in/Out tevel | at ACL Function

1 Qo In Low in When the system-off command is received from the Z-80, the system is
turned off after this signal goes low. it has PCTRL output from the SC7852
as its input.

2 VDD High side VGG is supplied.

3 ACL In High The pulse width of ACL must be greater than 1 microsecond in duration to be
recognized by the hardware, It takes about 80 microseconds before the LS|
starts to operate after input of ACL, This pin is used as reset input from the
ALL RESET switch of the PC-1600.

4 CL1) in The system clock generating ceramic oscillator is attached across these two

5 CL2 Out lines. With the PC-1600, a 1.229MHz oscillator is used for the basic clock of
the R$-232C baud rate.

6 FOUT Out System clock output. Not used.

7 PO Qut Low In Reset input to the SC7852.

This line is maintained low for 30 milliseconds during system-on and reset,

8 P1 Out Low in In a low state when the main CPU is permitted to access the memory and
1/0.

9 P2 Out High in In an opposite level of P1. Input to SLCT of the SC7852.

10 P3 Out Low in In a low state during system-on.

Used to turn on the system,

11 KH in High This signal goes high with an input of the ON key. When the system is off,
this LSl is in the standby mode, and it turns on the system with a high KH
state.

12 Kl in High A command request from the main CPU. Interrupt is caused by a high K1
state.

13 T In Test pin which is NC.

14 OSCOUT Out The 32.768 KHz timer crystal oscillator is attached across these lines,

15 OSCIN in

16 KL In High Reset input from the peripheral unit. As monitored by the software, if this
input is high for more than the given.time, the reset is executed.

17 Z15 Qut High in Z15 and KL are shorted outside and externally pulled down by the resistor.
215 is turned high for 1 millisecond in the reset routine to be converted
into the RSTE signal, and sent to peripherals as the reset signal via the
system bus, So, both Z15 and KL can be handled as an input/output line,
which may be used to apply reset to the peripheral or to receive reset from
the peripheral. This signal is used as the reset input of the CE-1600P.

18 214 Qut High in The sub CPU monitors the state of the BREAK/ON key via the KH input
line and its state is sent through Z 14 and supplied to PB7 of the SC7852.
Therefore, key chattering and bouncing of the BREAK/ON key are com-
pletely controlied the sub CPU.

19 213] OCut Low In The sub CPU goes into the power-down mode except when one of the
conditions mentioned below holds true,

(1) When a command is received from the main CPU,

{2) When a timer interrupt is received,

(3) If the BREAK/ON key sensing KH input is at a high level.

To prevent these conditions from occurring, Z13 is set low at every time
interrupt {1/128 second). If KH is at a high level, depression of the
BREAK/ON key is sensed.

PC-1600 HARDWARE

Pin Active | State 5
No. Symbol In/Out level | at ACL Function
Vee
b
! KH
713
Z13 l [‘ l l l l l
BREAK
N ‘ l
S | B | B
20 212 Out Low In For the PC-1600, a high signal state is normally issued (at ON).
21 Z11 in In NC.
2 Z10 Out High In This signal is used to interface with the main CPU. it goes high when the
sub CPU waits for a command (ready), and goes low when busy.
23 Z9 Out High in This signal is also used to interface with the main CPU. A high pulse is
issued when the sub CPU terminates a command execution.
24 z8 Out In Used to setup the analog input mode.
(1) Voltage is A/D converted when low (initial value). The input impedance
is 100K ohms.
{2) Currentis A/D converted when high.
This signal goes low when the interrupt cause status is read.
25 7 Out High In The sub CPU sets this signal high when the command specified interrupt has
been acknowledged. This signal is connected to INT6 input of the SC7852.
There are four causes which force this signal level to high.
{1) The weke-up time matched the real-time timer,
(11) The time of alarm-1 or -2 matched the real-time timer.
{111} Receipt of an input from the external keyboard.
{1V} At 0.5 second cycie of the real-time timer.
This signal goes low when the interrupt cause status is read or when all inputs
from the external keyboard have been read.
26 GND +QV
27 Z6 Out Low In A 1/64 second pulse of 50% duty is sent,
Connected to INT4 and PBS inputs of the SC7852.
28 25 Out High In NC.
29 24 Out High In Shorted with the analog input KC1.
Normally an open output.
30 23 in fn
31 22 in In
32 Z1 in In Not used.
33 20 In In
34 SOUT Out
35 SCLOCK In/Out in
36 F Out Used for generation of click and alarm sounds.
37 VRH In AJ/D conversion high side reference voltage (2.495V in supply).

PC-1600 HARDWARE

Pin Active | State .

No. Symbot fn/Out level | at ACL Function

38 KC3 tn Not used.

39 KC2 in Used for checking the CE-1600P power supply level. VPP supplied from
the CE-1600P via the system bus is A/D converted. if it is below the given
level, the peripheral is assumed to have a weak battery condition.

40 KC1 In Used for checking the PG-1600 main power supply level. The level of the
main power supply is A/D converted and checked. If it is below the given
level, a weak battery condition is assumed.

41 KCO In Receives the signal input from the analog input connector.

{1} For the analog input, A/D conversion is done.
{2) For the external keyboard input, its logic level is interrogated.

42 |R33 Out In MSB

43 R32 Out In

44 R31 QOut In

45 R30 Out In r Return data to the Z-80.

46 R23 Out In

47 R22 Out In

48 R21 Out in

49 R20 Out in LS8)

50 VRL NC

51 SIN In NC

52 vDD High power supply voltage level (VGG).

53 R13 in In MsB)

54 R12 in in

55 R11 in In

56 R10 in in ¢ Command from the Z-80.

57 RO3 In in

58 RO2 in in

59 RO1 in In

60 ROO In In Lsg

61 Q3 In Low In Hardware sensed weak battery detection signal.

A high on this line causes the CPU to force the system to go down, The only
means to turn the system on after recovery of power supply is the depression
of the BREAK/ON key or ALL RESET switch. The time in the real-time
timer would not be revised.

62 Q2 in h} Not used. Pulled up.

63 0]} in Low in Opposite polarity as Cl of the RS-232C interface. It is passible with Cl to
turn on the system when the system is off {(when this line is at a low level),

64 Qo in Low In {f this signal is at a low level when the system-off command is received from

the Z-80, the system is turned off.

' PC-1600 HARDWARE

7.1.4 Interface Between SC-7852 (Z-80) and LH-5803

The two CPUs are connected directly with each other through a bus. The bus signals of one CPU
being in operation are output to the system bus while the bus signals of the other CPU in
non-operation are not output to the system bus. (The two main CPUs cannot be operated at the same
time.) The table below shows the signals of the bus to which the two CPUs are connected.

SC7852 signal name Z-80 signal name LH-5803 signal name
Al15 ~ AO A15 ~ A0 A158 ~ AD
DB7 ~ DBO D7 ~ DO D7 ~ DO
Opposite polarity
MREQ of MREQ MEO
Opposite polarity
{ORQ of TORQ ME1
RD RD op*
WR WR R/W

Which CPU is currently in operation can be known by checking the state of the ELH signal.

ELH = fow : LH-5803 is in operation.
ELH = high: SC-7852 is in operation.

When the system is reset, ELH goes high and SC-7852 starts operating.
To move control from SC-7852 to HL-5803, execute the following:

OUT (38H),A where the content of A can be anything.
HALT

To move control from HL-5803 to SC-7852, execute the following: -
STA #A038H

7.1.5 Interface Between Sub-CPU and Main CPU

Figure (a) shows the simplified diagram of the interface circuit between the sub-CPU and the main
CPU. Figure (b) shows the timing of the signals shown in figure (a).

2722

PC-1600 HARDWARE

Fig. (a)
TC8576F (UART) LUS7813P (sub CPU
DSTB - KI (Fig. b)
BUSY Z10 riz~po0 X Command X
ACK 29 3 Ribrrorn
DATAS 210 Ready o
| b= R13~R00
DATA 29
R 9 R33~R20 X Return data
! , IORP L
(dora bus) < Biffer | R33~R20

10RP
{from SC7852)

Contained in the LR38041 gate array

When SC-7862 sends a command to the sub-CPU, it waits until the sub-CPU becomes ready. SC-7852

presumes that the sub-CPU is ready if the BUSY signal of TC-8576F (UART) is high.

Then, within 500 us after a change of the 1/64S signal, SC-7852 sends a command data (8 bits) to the

UART ports DATA1 to DATAS, and then sends the DSTB signal of UART. The sub-CPU receives this

command data through the terminals R13 to R00, and processes the command by the interrupt

service routine. There are two types of commands that SC-7852 sends to the sub-CPU:

(1) Command that requires a return data from the sub-CPU

(2) Command that does not require any return data from the sub-CPU

The sub-CPU judges the type of the command and performs one of the following processes.

For a command of type (1): When the command processing completes, the sub-CPU sends the return
data to B33 to R20, then sends a pulse to Z9 to notify that the command
execution has been completed.

For a command of type (2): Receiving a command, the sub-CPU sends a pulse to Z9.

SC-7852 waits until Z9 becomes high.

For reading the return data, SC-7852 performs a read operation to the I/O port 33H. The OPRP signal

goes low and the return data is read into the bus signals Dy to D; of SC-7852.

7.2 MEMORY
7.2.1 Memory Map Viewed from SC-7852 (Z-80)

The memory space that SC-7852 can directly access is 64 KB. In PC-1600, however, the memory space
is expanded to 320 KB through the bank switching technology. The bank switching is accomplished
by changing the content of the I/O port 31H.

The following diagram and table show the memory map viewed from SC-7852, and the SC-7852
access memory areas and the contents of /O port 31H.

nno

PC-1600 HARDWARE

Memory Map viewed from SC-7852

0000H
PC-1600
ROM
{Cs001)
4000H -
PC-1600 pC-1600 | CE-1600P | CE-1600P
Slot 2 ROM ROM ROM
s2 i (Printer) {Floppy
ROM {c) (Cs23) disk)
{Cs001) -k (Cassette)
8000H :
PC-1600
Siot 1 Slot 1 Slot 2 Slot 2
S1 S1 S2 S2
{A) (B) (c) (D) ROM
(CS123)
COO0H
PC-1600
{RAM3])
FFFFH
L 1 } 1 o - i 1 | '
'7 ¥ 1 T 1] T R T]
Bank 0 Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

SC-7852 Access Memory Areas and Contents of 1/0 Port 31H

Bank] Z-80 accessing Status in the 1/O et pul PV
No. space address 31H QUT;
b7| b6 b5| b4| b3|b2} b1} b0
0 0000H~3FFFH s|lalefs|lajalafw|] - 0
1 + elelelolalelafql o} «f 4
0 | 4000H~7FFFH #lel*l*lojoj0l*|0jO0]| O
1 t elelefei0fi0{1j] O O 1
2 t «|wje|elOf1i{0O]=] O} 1] O
3 " sle|elwfojr}1]=l 0] 1|1
c t elsfe|ejt|olO|+{ 1|00
5 t elofslelifolt]«l 1]0} 1
[] t ols|o|lol1]1(0]|) 1 1 [}
7 + eloteie|1}1({1]|=) 1 1 1
0 8000H~BFFFH | «|0|0{0j«|sisf{=| 0| O0O]| O
1 + 2 |0|0|1l=a]|olelel O] O] 1
2 «!011j0|eleletsj 0| 1|0
3 t elO]1|1la|e|lelel o) 111
(o4 t »[1[{0|0je|a|oje] 1 oo
5 t 21110{1]efajea]lel 1] O0] 1
6 + «l111[0|atnlale] 1 1 0
7 t #1111 |ejeln]e] 1 1 0
0 COCOH~FFFFH Olejolo|ejefjo|e]| o « 10
1 1 1jale]ja|[slajnle]| = - 1
*: DON'T CARE

nnA

PC-1600 HARDWARE

7.2.2 Memory Chip Select Signals

There are six memory-chip select signals.

(1) CS001 signal
When bank 0 in the memory space from 0000H to 7FFFH is accessed, the CS001 signal goes fow.
This signal is entered to the CS signal of ROM.

(2) CS123 signal
When bank 6 in the memory space from 8000H to BFFFH is accessed, the CS123 signal goes low.
This signal is entered to the CS signal of ROM. The ROM to be selected by CS001 and CS123
signals can be made not to be selected by setting the INH terminal {(which is entered to the system
bus terminal) to high. (In the PC-1600 main unit, the INH terminal is pull down to the ground and
entered to the OE signal of ROM.)

(3) CS24 signal
When bank 3 in the memory space from 4000H to 7FFFH is accessed, the CS24 signal goes low.
This signal is entered to the CS signal of 256K-bit ROM, and to the OE signal of this ROM is
entered the A15 signal. This 16 KB of memory space is expanded to 32 KB by the A16A signal.

(4) RAMS signal
When bank 0 in the memory space from CO00H to FFFH is accessed, the RAMS3 signal goes high.
This signal is entered to the CE2 signal of each of the two 8KB RAMs.

(5) RAM2 signal
The RAMZ2 signal is a memory select signal for the memory slot 1 ({S1). This signal goes low when
bank 0 or 1 in the memory space from 8000H to BFFFH is accessed.

(6) RAM1 signal
The RAM1 signal is a memory select signal for the memory slot 2 {S2). This signal goes low when
bank 2 or -3 in the memory space from 8000H to BFFFH is accessed.

7.2.3 Memory Map Viewed from LH-5803

The following diagram shows the memory map viewed from LH-5803.

Memory Map Viewed from LH-5803

0000H
Y S1 S2 S2
RAM2 RAM2 RAM1 RAM1
4000H
RAM
16KB
RAM3
8000H
PVOUT=0
CE-150 | CE-158
PVOUT=0]| PVOUT=1
CO00H
ROM
16KB
{CS123)
FFFFH
} : : : ¢ } . } '
Bank O Bank 1 Bank 2 Bank 3 Bank 4 Bank 5 Bank 6 Bank 7

nnr

PC-1600 HARDWARE

The memory space from 0000H to 3FFFH is the same as the SC-7852 memory space from 8000H to

BFFFH, and the accessing method is also the same.
The memory space from 4000H to 7FFFH is the same as the bank 0 of SC-78562 memory space from

COO00H to FFFFH.
The memory space from 8000H to FFFFH is the same as the PC-1500 memory space from 8000H to

FFFFH. That is, the bank selection of 8000H to BFFFH is accomplished by the PV signal of LH-5803.

7.3 LCD

The LCD (liquid crystal display) used in PC-1600 consists of a screen {156 X 32 dots) and a status

symbol line (16 symbols) and is operated in 1/64 duty.
The LCD is driven by HD61203 and HD61102. The diagram below shows the connection between the

LCD and the two drivers.

Yer (HD61102 - IC3)

LCD: LF7204E

- HD61203

Status symbol line —y

Screen (156 % 32 dots)
32 dots 32 dots
HD61203 HD61203 HDE1203
| sem—
Xy ~ X3z :> == X4 ~ Xa2 X33~ Xes
64 64 28
dots Yi~ Yo dots dots Y1~ Yog
Y1~ Yes
(HD61102 - IC3)

|

Y1~ Yes
(HD61102 - 1C2)

The LCD uses the basic clock of 217 KHz, which is supplied from the CKO terminal of SC-7852.

The LCD driver HD61102 has three chip-select signals (CS1, CS2 and CS3). This driver is selected only
when all of three select signals are enabled. The table below shows the /O address space allocated
for HD61102.

HD61102 {IC2) HD&1102 (iC3)
cs1 A2 A3
cs2 A5 A8
cs3 A4 Ad
Selected /0 space 50H ~ 53H 50H ~ 53H
58H ~ 5BH 54H ~ 57H

nneg

PC-1600 HARDWARE

7.4 KEYBOARD

The keys on the keyboard are scanned by interrupting SC-7852 every 1/64 second by the 64 Hz pulse
supplied from the Z6 terminal of the sub-CPU LU57813P.

7.5 BUZZER

The built-in buzzer can be activated by either of two signals: PC6 signal of SC-7852 and F signal of
LUB7813P. These signals are connected to the buzzer as follows.

PCe—»—@—*—F

The buzzer beeps when either of these signals vibrates. To the PC6 is connected the cassette playback
signal (PB2), the cassette record signal, the BEEP ON signal of BEEP command (PC7), and CE-150 or
CE-162E record signal (SD0’). When a BEEP OFF statement is executed, the PC6 signal is held at high
so that the buzzer cannot vibrate. When the buzzer is in the silent state, the PC6 signal is in the high
state. To the F signal is connected the clicking ON signal, the wakeup ON signal and the alarm ON
signal. When the buzzer is in the silent state, the PC6 signal is in the low state.

7.6 RS-232C/SIO INTERFACE

The PC-1600 has two serial ports, RS-232C and SIO, and has an LS| of TC8576F (UART) for the
interface of these serial ports. The table below shows the terminal signals of TC8576F (UART). Since
TC8576F has only one serial interface, RS-232C and SIO cannot be used at the same time. Which serial
port is used is specified by an OPEN or SETDEV statement in BASIC, or by the PRIM signal.

When the PRIM signal is set to high, RS-232C is enabled, the RS-232C interface supply voltage VDD is
supplied, both SDF and RDF go low, and the TXD and RXD signals of UART are respectively sent, with
their polarity inverted, to the TXD and RXD signal lines of RS-232C.

When the PRIM signal is set to low, SIO is enabled, the VDD stops being supplied, and the TXD and
RXD signals of UART are respectively sent, with their polarity inverted, to the SDF and RDF signal
lines of SIO. The RS-232C output signals are held at the high impedance state or at the low level.
When the system is powered on or reset, the PRIM signal is set to low.

Note: Use of the RS-232C port consumes more power than the SIO port. When your application
program has finished using the RS-232C port, change the selection of the serial port to the SIO
port to prevent the battery power from being wasted.

nn=

PC-1600 HARDWARE

The TC8576P is a single chip C-MOS LSI which supports the
RS-232C serial interface and parallel interface.

In the LS| is contained the RS-232C ART (Asynchronous
Receiver Transmitter), its baud rate generator, and the
Centronics transmitter/receiver interface.

When the ART receives data from the CPU, the data are
converted into serial form and sent out on the TXD line. On
the other hand, the serial data received on the RCD line are
converted into parallel form before being handed to the
CPU. The ART is able to inform the CPU at any time of the
completion of sending the data received from the CPU or
the reception of the data to be handed to the CPU.

The clock input of the IC is divided by a 4-bit programmable
prescaler and becomes the internal clock (SYS-CLK), which
is further divided by the baud rate generator composed of a
12-bit programmable divider, for the creation of any baud
rate of 50 to 38,400 bauds.

The transmission/reception handshake pins are provided
for the Centronics parallel interface. When the 8-bit data are
received from the CPU in the transmit mode, a strobe of the
programmed pulse width is automatically issued. In the
receive mode, when data are received with a strobe singal
from the external source, a busy singal is returned to
automatically inform the CPU.

Pin Active .
No. Symbol In/Out level Function
1 {NC) - - Not used.
2 RD In Low A low on this line causes the CPU to read data or status information from the TC8576F.
3 WR in Low A low on this line causes the TC8576F to receive data or control words sent from the CPU
via the data bus.
4 cs In Low | Alow on this line causes theTCBS76F to be activated. When TS is at a high level, both RD
and WR are disabled.
A1{ A0 |RD|[WR| TS Function
0 0] 1 [¢] RXD - data bus, serial
0] 0} 1 ol o0 Data bus — TXD, serial
0 1 8] 1 o] PIN — data bus, parallel
g1 1 0] 0 Data bus — PVOUT, parallei
1 0j0 1 0 Serial status — data bus
1 o1 0] 0 Data bus — parameter register
1 1 0 1 ¢} Parallel status — data bus
1 1 1 Gi{o0 Data bus — command + parameter address
A L B B Data bus, high impedance * don’t
care
* * 1 1 0 Data bus, high impedance
5 6 A1, A0 in — in combining this signal with RD or WR, the CPU selects the contents of the data transfer
with the TC8576F.
7 GND Power - Power supply.
supply
8 INT Out High Logical OR of four internal signals (RXRDY, TXRDY, PRRDY, and PTRDY) which is
used to cause an interrupt to the CPU.
9~16 | D7~DO In/Out - Data bus.
17 VCC Power - Power supply,
supply
18 GND Power - Power supply.
supply

nnn

PC-1600 HARDWARE

Pin
No.

Symbo!

In/Out

Active
tevel

Function

19~26

DATA1~DATAS

In/Out

Bidirectional parallel data bus fixed to the output mode.
The input mode is established with a high CDS state and the output mode is
established with a low CDS state. The contents of data are in the reverse phase.

27

DSTB

infOut

Parallel mode data strobe signal.
Data strobe is sent when CDSis “1.”
Data strobe is received when CDS is “0."

28

ACK

in/Out

Parallel mode acknowvledge signal.
ACK is sent when CDS is “1.""
ACK is received when CDS is *'0."

FAULT

[n/Out

Paraliel mode fault signal.
When CDS is “1,” the contents of the bit ‘0" of the command byte are sent out.

When CDS is "0,” the contents of this signal line can be known by the status bit “’0."”
Mainly used for detection of a fault in the device.

30

BUSY

In/Out

Parallel mode busy signal.
When CDS is ““1,” a busy signal is sent.
When CDS is “0,” a busy signal is received.

31

PRIME

In/Out

Parallel mode input PRIME signal.

When CDS is 1, it serves as a single bit input port,

When CDS is ”0,” it serves as a single bit cutput line, but it still wouid be possible to
choose a high level, low level, or one-shot pulse signal.

32

In/Qut

Parallel mode select signal.

When CDS is “1,” the contents of the bit 1" of the command byte are sent out.
When CDS is ""0,” the contents of this signal line can be known by the status bit *“1.”*
Mainly used for a device select.

33

RTS

Out

Serial mode request to send signal.

A general purpose 1-bit output port in the reverse phase. By programming the bit ‘5"
of the command byte, it is set to “’0.” The signal is normally used by the modem
control as a request to send.

34

O
(%2}
X2

Serial mode data set ready signal.

A general purpose 1-bit input port in the reverse phase, 1t is possible to know the state
of the signal by interrogating the status information {bit 7) of the serial interface. This
signal is normally used for tests by the modem for such as 3 data set ready. With the
PC-1600, this signal is connected with the RXD line.

35

Serial mode clear to send signal. Connected to GND.
If the TXEN bit of the command byte has been set to *‘1,” a high on this line enables
the SMI transmit (serial}).

36

Out

Serial mode data terminal ready signal.

A general purpose 1-bit input port in the reverse phase, By programming the bit *‘5’* of
the command byte, it is set to ““0.”" The signal is normally used for the modem control
as a data terminal ready.

37

TXD

Out

Serial mode transmit data signal.
Serial data output for the serial interface.

38

RXD

Serial mode receive data signal.
Serial data input for the serial interface.

39

vece

Power
supply .

Power supply.

40

CDs

In

Parallel mode direction selection line. Fixed to GND, it's an input signal to determine

the direction of the parallel interface. When the signal is at a low ievel, the parallel
interface is operated in the output mode. When the signal is at a high level, the parallel
interface is operated in the input mode.

41

XCLK

Fixed to GND.

This line is an input to the internal 4-bit programmable prescaler. Its output becomes
the system clock {SYS-CLK} which is used for internal timing generation and baud rate
generation, Normally, 400KHz~ 10MHz is used as the system clock frequency.

nnn

PL-1600 HARDWARE

Pin Active 5
No. Symbol 1n/Out level Function
42 RESET In Low {C reset pin. A low on this line disables all the functions of the IC.
43 PS5V in/OQut - Parallel mode signal which is fixed to GND.

When CDS is “1,” it serves as a 1-bit output port.
When CDS is “0,” it serves as a supply voltage input of the external device.

44 PE In/Out - Parallel mode paper end signal.
When CDS is “1,” it serves as a 1-bit output port.
When CDS is “0,” it receives the paper end signa! from the external device.

RS-232C Interface Signals

The RS-232C interface signals of PC-1600 conform to the EIA and JIS standards, however, the control
is somewhat different to the general RS-232C interface.

The RS-232C interface signals of PC-1600 conform to the EIA and JIS standards, however, the control
is somewhat different to the general RS-232C interface.

(1) Incoming signal
The incoming signals are shaped as shown below by the hybrid IC (BX7269W), so that they can be
processed as a logic signal.

B v
~-~=-VCC
GND L GND

{2) Outgoing signal
The outgoing signals are converted to the VDD to VEE level by the hybrid IC.

LA Ln T o

PC-1600 HARDWARE

7.7 POWER SUPPLY

7.7.1 Kinds of Supply Voltages
The table below shows the kinds of the supply voltages used in the PC-1600.

Power Voltage

supply range Description

VGG | 4.0 ~4.7V | e Logic driving power which is on while
the system is not operating. Power is
supplied to the chips that need protec-
tion.

(1) RAM16KB
Memory protection

{2) LUS7813P .
Real-time timer and wake-up timer

protection

(3) HDB1102
Display data protection which is
required to activate the display at
power-on after auto power-off. 3

(4) LR38041
To maintain the signal level of such as
the memory select signal at 2 non-
active level.

vcC 40~47V ® Logic driving power which is shut off
when the system is turned off. Power is

supplied to the chips that do not need
protection when the system is off.

(1) ROM
256Kbit

(2)ycrPu
S$C7852, LH5803

{3) HD61203(S)
LLCD common driver chip

(4) TC8576F
UART LSI

VEE | Approx. e For creation of a low voltage to the
-8.5V LCD drive voltage and the RS-232C
interface signals.

VDD | Approx ® For creation of a high voltage to the
6.0v RS-232C interface signals. This voltage,
however, is supplied when PRIME is at
a high level (RS-232C is chosen) and
shut off when PRIME is a low tevel,

7.7.2 Kinds of Power Supplies
The voltages described above are supplied from the following power supplies:
-—(1) Battery in the main unit
(2) AC power adapter
(3) VBAT of the system bus .
If more than one power supply is connected, the one that has the highest voltage level among the
power supplies is used.

lalal

PC-1600 HARDWARE

7.8 GATE ARRAY

The gate array is an LSl (LR38041) consisting of a number of gate circuits necessary for the
connection between the LSis in PC-1600. The table below shows the terminal signals of the gate array.

Gate array (LR38041) pin description

Pin Active "
No. Symbol in/Cut el Function

1 SLCB In 1t is an input of the sub CPU-issued signa! Pl which indicates commencement of the
system operation.

P {SLCB) goes high when the system is off and does the following.
{1} Data buses, D2~ D0, are fixed at a low level.
(2) Except for A13A, ali output levels are fixed to fow or high.

2 Q3 in Hardware weak battery detect signal.

{1} When a weak battery condition is detected, it forces Q3 high; $1, §2, §3, KO, K1,
and K2 cutputs are set high; KH output is set low; and RD is set to high impedance
(inactive).
(2) Q3 is at a low level when a weak battery is not established.
3 zZ12 in When on, the input is high.
i L The sub GPU is normally in the sandby mode to save power when a command is not

4 213 n oW received. But, it would not go into the power save mode if the BREAK/ON key
is continuously depressed, as it goes out of the standby mode if KH is at a high level.
To prevent this, the state of the BREAK/ON key must be interrogated with Z13 when
required. During the power save mode, Z13 is set to high to keep the KH outputata
low level,

5 ON In Low BREAK/ON key input.

The signal goes low when the BREAK/ON key is depressed; otherwise, it is in a high
state.

6 KC1 in Signal input from the analog input connector.

7 cL2 in Sub CPU 1.229MHz clock input.

8 RD Qut Low Read signal created by five signals (MEO, ME1, OD, CKO0S, and BRO)} which are
externally wired OR with RD of the Z-80. v
When the 2-80 is in operation, RD is at a high impedance.

9~16 R20~R33 in Return data from the sub CPU. The data becomes the Z-80 data when the Z-80 reads
33H of 1/0.

17 PRIM in The PC-1600 has two serial input/output interface: the RS-232C interface and the SIO
interface. But, either one must be assigned as only one hardware is for the serial input/
output.

{1} The SI0 interface is selected with a low PRIM state.
(2) The RS8-232C interface is selected with a high PRIM state.
PRIME = ‘‘Low’’ PRIME = "‘High"’
Output SDA Low TXD
Output SDF TXD LOW
Input RXD RDF RDA

18 TXD in Low Transmit data which is an output from the T8576F UART.

19 RXD Cut Low Receive data which is an input to the T8576F UART.

20 RDA In Low Receive data which is an input from the RS-232C interface.

21 SDA Qut High Transmit data output is sent through the RS-232C interface connector. A low signal
state is sent when PRIM is at a low level,

22 RDF in High Receive data which is an input from the S10 interface.

23 SDF Out High Transmit data which is an output to the SIO interface connector. A low signal state
is sent when PRIM is at a high level.

PC-1600 HARDWARE

:'i:' Symbol in/Out l}gievle Function
24 CKOS In The OD signal indicates that the CPU (LHS5803) read timing is at a low level when not
writing, So, it may possibly be at a low level when not reading, and it also may not
match the Z-80's timing during data input/output of the SC7852 internal data.
To prevent these problems, the signal goes low only when the LH-5803 is reading the
memory or 1/O is created with five signal (MEOQ, ME1, OD, CKOS, and BRO5).
25 vce - Power supply (input of VGG of the system).
26 GND - Power supply.
27 BRQ in See Pin No. 24.
28~30 | DO~D2 In/Qut Z-80 data bus.
31~35 | D3~D7 Out . When the sub CPU output P1 {SLCB), which is sent out when the system is off, is at
a high level, D2~ D0 become low, thus fixing the level of the input sinal during
system-off as D2~ DO are inputs also.
36 c/b In High The C/D line of the SC7852 goes high when the Z-80 wirites 3DH of the 1/0.
37 IORP in Low The signal used to send R33~ R20 on the Z-80 data bus.
It goes low when the Z-80 reads 33H of the 1/0. .
38 cL in Low System reset input. When this signal is at a low level, it forces A16A to high, A15A
to low, and A14A to high.
39 A13 In CPU address A13,
40 Al4 In Input of the CPU address A14 (insignificant).
41 DSR Out Not used.
42 CLK1 Out When the systemn is on, CL2 is issued on this line and becomes the basic clock for the
UART. A low is on this line when the system is off.
43 KH Out High Opposite polarity of the BREAK/ON key input is sent to the sub CPU.
44 A13A Out Opposite polarity of the A13 input is sent.
45~47 | A14A~A16A Out C/D latched D2~DO0 output.
Also, A16A is used for separating the CS24 selected 16KB memory space 4000H~
7FFFH (bank 3) into two banks.
48~50 | LHS1~LHS3 In Low Memory select and 1/0 select signals from the SC7852 are sent to siots of S1: and
51~563 | KAO~K2 in Low $2: via the gate array. The reason why is that it has to be set at a high level at
system-off as the SC7852 power supply is shut off when the system is off.
{1} When the system is on but not in a weak battery condition the status of each
signal appears on S1, 82, 83, KD, K1, and K2.
(2} All are high when the system is off or a weak battery is detected.
54~56 | S1~S3 Out Low LHS1~KA2 outputs.
59~61 | KO~K2 Out Low All are high outputs when the system is off.
62 ME1 In
63 MEO In See pin No.24,
64 (e]4] In

PC-1600 HARDWARE

7.9 CONTROL OF I/0 PORT CONTROLLER

The /O port controller has seven read/write registers, each allocated to an I/O address of Z-80.
Reading from or writing to a register is accomplished by performing a read or write operation to the

appropriate /O address.
The table below shows the registers and their I/O addresses.

Register /O address

OPC register 18H
MsK 1A

IF 1B

DDA IC
DDB 1D
OPA 1E
OPB 1F

The I/O controlier can be controlied by performing a read/write operation to these registers.
The details of each register are described below.

(1) MSK register (Z-80 I/0O address: 1AH)

MSK
b; bg bs bs by b2 by bp
[x[x[xfx] [x] | |

' Y interrupt mask bit for IRQ
interrupt mask bit for PB7

» Interrupt mask bit for transmit flag TD

When the bit is “1”, the interrupt is enabled.

Note: When the contents of MSK register are read, the upper 4 bits contain the contents of CL1, SD1, PB7 and IRQ.

** | cL1|sD1|PB7 | IRQ [MSK|MSKIMSKIMSK

MSK read contents
{2) IF register {(Z-80 I/O address: 1BH)

b bs bs by by by by bg

L—-b‘ This bitis set to “1” at the rising edge of input IRQ.

! This bit is set to “1” at the rising edge of input PB7.

This bit is set to “1” when the serial data transmission has
.| been completed.

This bitis reset to “0” when the CPU has loaded the serial
transmission data into the register.

TD is read-only.

&

PC-1600 HARDWARE

(3) DDA register (2-80 I/0 address: 1CH)

DDA
b; bg bs bs by by by by

This register determines the direction {input or output mode) of the PA port.
Bit i of DDA register

When bit i is “0” | PAiis in the input mode.

... ugs | PAIPisin the output mode and the content
When bit 1 is *1 of OPAI is output. *

(4) DDB register (Z-80 1/0 address: 1DH)

DDA
b; bs bs bs bz by b1 b

[xI T Ix[xix{xjx]

This register determines the direction {input or output mode} of the PB port.
Bit i of DDB register

When bit i is “0” | PBi is in the input mode.

... ..« | PBiisin the output mode and the content
| When bitiis "1" + ¢ 5ppj is output.

(5) OPA register (Z-80 I/0 address: 1EH)

The OPA register is a buffer register used when transferring data with the PA port. In the output mode, when you set DDAito "1
{for the output mode) then send data to 1EH port, the data on the bus line are loaded to OPAi and output to PAi. In the input
mode, when you set DDA to “0” (for the input mode), the data transmission from QPAI is disabled, the content of PAi is loaded
to OPAI and the data are sent out to the bus line.

(6) OPB register (Z-80 I/0 address: 1FH)

OFB
bs bs by by by b

(T T 1T T 1T

The OPB register is a buffer register used when transferring data with the PB port. In the output mode, when you set DDBi to “1”
{for the output mode} then send data to 1FH port, the data on the bus line are loaded to OPBi and output to PBi. In the input
mode, when you set DDBi to “0” (for the input mode), the data transmission from OPBi is disabled, the content of PBi is loaded
to OPBi and the data are sent out to the bus line.

PC-1600 HARDWARE

(7) OPC register (Z-80 I/O address: 18H)

The OPC register ia a buffer register used when sending data to the PC port. Also, the data on the data
bus can be latched into the OPC register by the falling edge of the clock signal applied at the dos
terminal of SC-7852.

oo [T LT

L———This content is sent, with the value inverted, to the PC6 terminal.

L—.———=This content is sent to the SDO terminal.

HARDWARE OF PERIPHERAL DEVICES

8.1 CE-1600P

8.1.1 Specifications

Model name:
CE-1600P
Type:
Printer/cassette interface
Print method:
X-Y plotting
Print capacity:
160 printing positions/line (with minimum size print
characters)
Printing colors:
Four colors of black, blue, green, and red
Printing character size:
Nine sizes (0.8 mm x 1.2 mm ~ 7.2 mm x 10.8 mm).
Printing directions:
Four directions.
Minimum print pen moving distance:
0.2 mm
Printing speed:
5 characters/second, average ({printing the size 2 char-
acters in black with all kinds of ASCI! characters {96)).
The printing speed is subject to variation depending on
the print contents and program.
Print form:
210 mm wide roll paper whose roll size is up to 40 mm
(EA4AR1).
216 mm wide roll paper (EA-1LR1).
Cut sheet (A4 or letter size)
Power supply:
From the internal rechargeable batteries which can be
recharged through the AC adaptor (EA-160).
Power consumption:
6vVvDC ,5.7W
Maximum printable lines per charge:
About 250 lines after 8 hours of recharge (continuous
printing 40 digits of /5" of the print size 2 in black on a
single line under the operating temperature of 20°C).
Operating temperature:
5°C ~ 40°C
Physical dimensions:
320 mm (W} x 221.5 mm (D) x 46 mm (H)

Weight:
About 1.6 kg including the pocket,

Accessories:
EA-160 AC adaptor, hard case, roll paper {1 pc), pen (2
pcs each of black, blue, green, and red), tape recorder
interfacing cable (1 pc), paper holder (1 set), shaft {1
pc), instruction book

= About output error =
On account of a mechanical accuracy, a slight error may
appear on the output. The error is larger in the direction
Y (vertical}) than in the direction X (horizontal). It is
preferable to have accurate output to avoid repeated
operation in the direction Y (paper feeding direction)
when programming.

Options
The following options are available for the CE-1600P.

Product
Item fama Note
1 | Roll paper EA4AR1 210mm wide, 14m long,
40mm roll
2 | Roll paper EA-1LR1 216mm wide, 40mm roll
(only in
U.S.A. and
Canada)
3 { Print pen EA-850B Contents of 4 pens of black,
4 | Print pen EA-850C Contents of one each pen of
black, blue, green, and red.
5 | Floppy disk CE-1600F | 25" floppy disk drive unit
drive
6 | Cassette tape CE-152
recorder

HARDWARE OF PERIPHERAL DEVICES

8.1.2 Block diagram

Since the printer, cassette, and floppy disk drive are all
controlled by the PC-1600, the CE-1600P and PC-1600F
can not operate by itself,

Battery, however, can be recharged without intervention of
the PC-1600.

A 32KB ROM within the CE-1600P contains the program
to operate the printer, cassette, and fioppy disk drive.

60-pin 4-color plotting printer Keys {color change,
fernate PTMPG3308A forward and reverse
System bus «e—— <:-. gaeterhf:e?r)emote
(expansion bus) Printer drive signal p:;l:“c) ® ’
Driver
LB1247 {x2) Relay drive
N signal
Printer and relay
drive signals Others Remote
CR
60-pin detection ‘
male : | N Gate array Read signal Cassette TAEI'::‘ CE-152
'(:‘n?l-a‘iﬁgzit) v LR38045 e (o b EAR {cassette tape recorder)
9 Write signal |
Chip select
32KB ROM
. SC27C256
50-pin Address/Data
((:25;1"62?3%;'— female " | Power supply EA-160
D
f ® Plotting printer (AC adaptor)
e Cassette recorder VP s
interface v VBAT
© CE-1600F software cc ‘ .
in memory
L
Ni-cd
PC-1600 (AAXS)
Power supply circuit
{Fig.1) CE-1600P block diagram
IRQ
: ;
' .
' 1
; ‘
' .
1 1}
' — < PAO~6!
t 1}
| DATA &)
DBO~7 <=t = BU MU |
! - FF2 PBON~7N
] L o :
v H
2(1);71'5;\ - :ADDRESS i Bu: 8 bits 1/0 Buffer
PTI, PUI, EZI U oFF3l=—t> peON~7N Mu: Multiplexer
m::‘Nol; lgchzl : ' FF1~3: 8 bits Latch
“WRNI : DCt DC2 DC3 : DC1~3: Decorder
3 ' : INT: Interrupt circuit
L
N ! RST: Reset circuit
: ' CMT I/F: Serial input
ASTI ' BEw ‘ PAO~71: 8 bfts input
! i] ; PAON~7N: 8 bits output port
: ' PCON~7N: 8 bits output port
P e L] - - - ---—-------;-_._f.--f_.l

CSNO 107N RSTN GND VCC
(Fig.2) LR33045 gate array biock diagram

239

HARDWARE OF PERIPHERAL DEVICES

8.1.3 Description of each block

{1) LR38045 gate array
Table below shows the functions and port address of the

gate array block.

Block

Function

Bu
(8-bit 1/O buffer)

A bidirectional 8-bit input/output buffer.

Mu
{multiplexer)

Used to select FF1, FF2, FF3, or PA port
when data are read from the gate array.

FF1~FF3
{8-bit latch)

The interrupt circuit is controlled with
an FF1 output. For instance, when a
certain bit is set to ‘1", the input
signa! to the PA port (PAO~61) which
corresponds to the bit is sent on the
IRQ line as an interrupt signal.

PB port (PBO~7N) tatch

PC port {PCO~7N]) latch

FF1:

FF2:
FF3:

DC1~3
{decoder)

For generation of 32KB ROM chip
select signal. {CSNO)

For generation of 2.5 FDD select
signal. {IO7N}

For selection of FF1~FF3 and FFD
reset latch at the time of data write.
Or selection of FF1~FF3 or PA port
at the time of data read.

DC1:

DC2:

DC3:

INT
{interrupt circuit)

Inputs to the PA port {PAO~61) are ORed
and sent on the IRQ line as an interrupt
signal.

As PAO~61 correspond to Q0~Q86 of FF1,
the interrupt is enabled when FF1 is set
with 1",

{Fig. 3 shows the quivalent circuit of the
interrupt circuit.)

IRQ

— 0 & ofels
Qo 1 <p————Fa01
Qi e PALL
Q2 p——emPAZ1
1] PASL
Q¢ ~p——o—Padl
Qs ~p~——o—PAB |
Qs pereep—r= PAG [

e e e

To multiplexer

{Fig. 3) interrupt circuit

RST
{reset circuit)

ARSTN) is issued which will be kept active

FF1~3 are reset by this circuit, when a reset
signal is received on RSTI.
At the same time, the 2/5” FDD reset signal

until cleared by software,

Block

Function

vee

{From PC-1600}

RSTE

Resat capacitor /

Bt BOwr On

s
.
[
1
1
'
.
’
3
.
’
N
H
H
v
H
.

It is possible without an input on RST! to
output RSTN by means of software.

{Fig. 4 shows the equivalent circuit of the
reset circuit and Fig. 5 shows its timings.)

{ we [
wo)

D80 ey

CK o)

{Fig. 4) Reset circuit

Reset Signal
tor FF1~3

Sotftware resat

{Fig. 5) Reset circuit timings

CMT I/F
{cassette interface
circuit)

The cassette signal received from the EAR
jack is amplified and waveform shaped,

to be sent on PA7B. (See Fig.6 for its
equivalent circuit.)

A

(Fig. 6) Cassette interface circuit equivalent
circuit

NOTE: Ports, PA, PB, and PC, are all active high within

the gate
low signal

array, but they are converted to active
s outside of the gate array,

Gate array

inside : Outside

Multiplexer

—a— PAQ~61

<p

FF2 1 0 PBON~7N
o
1

ACTIVE HIGH

For insta
PBON out

]
' ACTIVE LOW

nce, if “1"” is set to Q0 of FF2, the
put becomes low.

HARDWARE OF PERIPHERAL DEVICES

TABLE-3
Table-
1ORQ Address Data
WR|RD Operation
M1 {A7] A6] AS| A4] A3] A21 A1]| AD D7 D6 D5 D4 D3 D2 D1 Do
1 t1fojojofo]O0jO0| 0] 0/ 1| Wrtedatato FF1 [¢] 8 Printer CR [Printer SW Reverse CC key
INT INT FDINT PF key PF key INT
Enable Enable Enable INT INT Enable
Engble Enable
1 0 |} Read data from FF1 t 1 t t T t t 1
I——
ojoi0 1 0 1 Reset FD 1 FD
(reset with *0") ___—’—-—/‘—"’——_’A Reset
1 | 0] ReedPAD~7 CMT ()] Printer Print FD Reverse cC
input CR SW INT PF key PC key key
i FFD CMT i & RMT RMT Motor Motor Motor Motor
LI LR Ak ‘(Ilv?ralf)_{-da% *© Enabll: OFF ON zD zB zc ZA
1 |*0 | Read data from FFE t t t t t t t t
(PBO~7)
i FF M Mot Motor Motor Motor Motor Motor Motor
¢ ! ! 0 ! Ygla)ega;a; 1o FFE $;)or gsor YC YA XD = XB XC XA
1 0 | Reed data from FF3 t t t 1 t t t t
(PCO~7)
®OTE: Above are all high active as seen from the CPU side, except that FD reset is low active. ¥
@ Gate array (LR38045) pin description
Pin Active o
No. Symbol /0 level L.evel at reset Description
1~8 PC7N ~ PCON Qut Low High 8-bit output port (port address: 83H).
DO ~ D7 correspond to PCO ~ 7N via FF3’
8~ 16 | PB7N ~ PBON Out Low High 8-bit output port {port address: 82H).
DO ~ D7 correspond to PBO ~ 7N via FF2,
17 {NC)
18 PUI in (Low) PU signal input. Used for creation of a 32K8 ROM signal
19 PTI In (High) PT signal input. {CSNO).
20 EZI in {High) ELH signal input.
21 MINI In (High) w1 signal input. Used for creation of the IO7N and gate
22 IORQ in High IORQ signal input. array internal enable signal.
23 MRQI in High MREQ signal input {used for generation of CSNO).
24 RSTI In High Reset signal input.
When the reset sigpal is received on this line, it issues the internal
flipfiop reset signal and RSTN (2.5 FDD reset signal).
25 vce i Power supply.
26 GND
27 IRQ Out Low High impedance Interrupt signal output.
The output is Nchanne! open drain type and is pulled up to VCC
on the PC-1600 side.
28 RDNI In Low RO signal input.
29 WRNI In Low WR signal input.
30~39 | AOI~ A7 In Address input.
‘ A14l, A15]
40 (NC)
41 RSTN Out Low . Low 2.5” FDD reset signal output.
The active state of the signal is unconditionally issued with a reset
signal and it must be cleared by means of software. it is also possible
to create the signal by software. (Address: 81H, DO, WR)

241

HARDWARE OF PERIPHERAL DEVICES

5';" Symbol 1/0 /}:‘tlg'le Level at reset Description
42 107N QOut Low {High) 2.5" FDD select signal.
{Out through the address 70H — 7FH)
43 CSNO Out Low {High) 32K B ROM select signal.
ELH, MREQ,PT High
PUcwwwnnss: v s s Low
Address 4000H ~ 7FFFH
{PV ... Low; printer, High; FDD, CMT)
44 ~51 | DBO ~ DB7 in/Out (8-bit) data input/output.
52 PAOI ~ PASI In Low Input port (port address: 81H).
5 (PAOI ~ 6l correspond to DO ~ 6.
57
60 PAS6I {interrupt controlled by FF1 (address: 80H) outputs Q0 ~ 6.)
58 GND Power supply.
59 {NC)
61 PA7B Qut {High) High CMT I/F circuit output.
{The cassette signal that has been 5mplified and waveform shaped is
sent from this line.) {See Fig. 6.)
62 PAGN {Out) {Low) High Comprise an amplifier when a feed back resistor is connected across
64 PA71 In PA7N and PA7I. {See Fig. 6.)
{Input signal is given from PA7L.)
63 {NC)
{2) Printer drive IC (LB-1247) Eight circuits shown in Fig.7 are contained in a single driver
circuit. The driver 1 is sued for driving of printer X and Z
Ve ve motors and the driver 2 is used for driving of printer Y
t motor and and remote relay. {Two circuits are not used for =
[the driver 2.) Remote
OFF _m_ ON
VDD VCC1 VCC2 l Fosd "[]n's Y
From gate array ouT
N PRSpo
Low { 5; i3
GND _UO—N Driver 2 73 R :lo
Dri yow o
nver J’_ from [PB4N ————— N5 ours |RRY ON L gmri2 ve
gate HEE
As shown above, the output transistor within the driver is a""{ PBSN e N6 ours [RRY OFF 27 gor, 211
turned active in the period that the driver input signal " Ratey
(signal from the gate array) is low level, so that current L UJ

flows across the load connected to the output terminal of
the driver. Fig.7 shows the equivalent circuit of the driver.

vDD VCC1 vcez

IN
D1 10KQ

EDZ

—OouTt

Tr3

3
::2Kn

nr GND

(Fig.7)} Driver (LB1247) equivalent circuit

242

(Fig.8) Remote circuit

To increase the torque of the printer Y motor, a 5V zene:
diode {HZ5C1) is inserted across two VCC2 (which cor
tains reverse surge absorb diode) of the driver 2.

(3) Printer {PTMPG3308A)
The PTMPG330BA ball peint pen type, 4-color, plotting
printer consists of three stepping motors which are used i
control the direction X (horizontal pen movement), th
direction Y (vertical pen movement), and the direction 3
{(pen up/down and color change). Each motor is driven “tﬁ}
coils of A, B, C, and D. The CR detect switch is attached to
the left side of the printer for detection of a CR via the pin -
PAS5! of the gate array. The X and y motors are 1-2 phase
excited and the Z motor 2-2 phase excited.

Printer, for detail of PTMPG3308A printer specifica-
tions, characteristics, drive method, etc.

8.1.4 CMT interface

The CMT interface consists of the following circuits:
® Write circuit

® Read circuit

@ Remote circuit

{1} Write circuit

As shown below, the logic level signals are converted into

signals of micro level.

e High frequency component of signal is eliminated. >

® As a 3KHz component drops 6dB than a 1.5KHz com-
ponent because of the low pass filter, compensation is
therefore done. —{High frequency compensation|

@ The output level is set to the micro level, >[Attenuation

® DC component is cut. =>{DC decoupling

@ Low pass filter

@ High frequency
CMT OUT ———={ compensation |~ MIC

4.7VPP = VCC e Attenuation
A\ [8.5mVPP

@ DC decoupling
3mVRMS

R1 cz2 R2

cMT OUT F——AM—t————v1 mic
12K0 0.047uF 6.8KR
ct _l_ A3 EE 68082

Low pass High Attenuation
filter frequency
compensation

C1, C2: DC decuppling
Output level: 3mV rms
Qutput impeadance: APROX 60052

(2) Read circuit

Qe

l—-‘h EAR

Inside gate array

ks

The read signal amplifier circuit consists of the same type as
that of the CE-150. The circuitry is contained inside the
gate array in the case of the CE-1600P.

4-3. Remote circuit

For the relay (AG8229 or G5AK-287P) is a two-coil
latching type, A ON {or OFF) puise must be given to the
activate (or deactive) the relay through the driver.of the
gate array, in order to turn the relay active, (See Fig.8.)
The width of pulse must be more than 5 milliseconds than
that mentioned in the relay specification. With the CE-
1600P, it is set to about 10 mitliseconds.

NAQ

HARDWARE OF PERIPHERAL DEVICES

The following signal formats are used for the cassette
interfacing signals.

Write PWM method (1600 method)
Read PWM method (1600 method) and
1600 method

8.1.5 Power supply circuit

(1) Power supply
VP, VBAT, and battery recharge circuits

RM-102Z (x2}
AC Adaptor D1 D2 D3
AoourBAV ey & B - + VP (6.4V)
RK-13 |
Re88 o D5
B o> VBAT
L RK-13
Nicd =,
= Bt
AAXE == D6
J; 11DQO03(1A) x 2
D1: For prevention of reverse current to the rechar-

geable battery to the adaptor.

To achieve efficient recharging of the battery, a

Schottky barrier type diode RK-13 (1.7A) is used.
D2, D3: These diodes are used to drop the voltage from the

printer to less than printer driving voltage (7.15V

max.).

D4: For prevention of reverse current from VP to the
rechargeable battery, when the adaptor is being
used.

D5: For prevention of reverse current from VBAT

{PC-1600) to VP (printer). .
The diode is a Schottky battery type for avoiding
battery exhaustion when the adaptor is used.

D6: To avoid exhaustion of the battery in the main
unit when the rechargeable battery is used, D6 is
used to bypass D4 and Db.

To meet the printer drive voltage (5.0V, min.), the
rechargeable battery low voltage is set to 5.65V
limit (1.13V per battery).

After the main unit battery is ORed with the VBAT supply

from the CE-1600P, VCC is reguiated to 4.7V before

supplied to the CE-1600P. (See the figure below.)

When the main unit power is turned off, VCC is not sup-

plied.

CE-1600P PC-1600 {Main unit)
vCC
VBAT Power VCC
% reguiator
= UM-3
i {x4)

HARDWARE OF PERIPHERAL DEVICES

{2) AC adaptor (EA-160)
The following is a brief specification,
® Primary side input rating
100VAC, 50/60Hz, 20VA (Japan use)
® Secondary side output
Rated voltage: 8.4VDC
Rated current: 1A
Peak current: 2A
Qvercurrent protection: About 2.5A
{Output short protection)

\Y
4

8.4v

L]
Abt. 500mA Abt. 2.5A

Regulator type: Chopper
® Size of case and weight
67.2 mm (W) x 115.2 mm {D) x 53.5 mm (H) excluding
the stand of 1 mm high.
695 g

244

8.2 CE-1600F/CE-1650F
8.2.1 Specifications

Model name: CE-1600F
Product name: Floppy disk drive
Drives: One drive {one side}/unit
Recording media: 2.5 two-sided floppy disk
Recording method: GCR (4/5)
Tracks: 16 tracks/side
Capacity: 64KB (one side)
(8 sectors/track)
Power supply: 6VDC: Supplied from the unit connected.
Power consumption: 2.5W
Operating temperature: 10°C ~ 35°C
{drive operating requirement)
Humidity: 20% ~ 80% {without moisture condensation)
Physical dimensions: 96mmi{W) x 122mm({D) x 39mm(H)
Weight: 470 grams
Accessories: 2.5” two-sided floppy disk {x 1), instruction
book {x 1)
Option: CE-1650F
{contents of 10 2,5” two-sided floppy disks)

NOTE: ‘2.5 {63.5 mm)’ indicates the diameter of the
floppy disk media.

HARDWARE OF PERIPHERAL DEVICES

8.2.2 Cautions in instailing and
removing the CE-1600F

(1) Cautions in installing the CE-1600F

Power must be shut off to the CE-1600P before connecting
the CE-1600F to the CE-1600P,

Pay special attention to hold the unit in a way as shown in
the figure below with care not to touch the disk holder, in
order to avoid a read/write failure because of center devia-

tion.

{2} Cautions in removing the CE-1600F

Before the removal of the CE-1600F, make sure that the
power is off and remove it without adding force to the disk
holder (see the figure below}.

Bottom of unit

HARDWARE OF PERIPHERAL DEVICES

8.2.3 Block diagram

FROM
CE-1600P
(PRINTER)

50P CONNECTOR

Do ~ D1 8 Do - D7 W W
ERASE
FDC i
& WD
LOGIC b——4
A, ~ A, 3 A, ~ A, WG R/W AMP
—— Lst
RD
P
GATE
ARREY
{O7N, WR, RD, 3 CSO, WR, RD, SOLENOID
RSTN REST J
SOLENOID
POWER ON CONTROL
RESET 1 IT
CIRCUIT cincy
Vee (+5V) +5V
5VB Eﬁ
REGURATED
POWER
SUPPLY Y,
CIRCUIT Bve MOTOR
CONTROL
Vvp (+6V} 16V CIRCUIT

8.2.4 Circuit description

(1) Internal operation

Since the floppy disk controller is contained within the
2.5" floppy disk drive unit and directly interfaced with the
bus line, data line and control signals are directly con-

nected.,

So, only the power-on-reset signal generation circuit and
the amp’s 5VC (+5V) supply regulator circuit are provided

for circuit.

(2) Power-on-reset signal generation circuit

VvCC

RS

RSTN =

vCC

Fig. 1 Reset circuit

-~ REST

1
. [
vCe s

®

Delay

FDU-250 MICRO FLOPPY DISK DRIVE UNIT

POWER ON
1

]
. .
1

e

0

' Systemn reset

vCC
(+5)

0o

Reset
period

Fig. 2 Resst timings

i

Fig. 1 shows the reset circuit and Fig. 2 shows its timings.

Rb is a charge current regulating resistor C3 which is used
for pullup and delay. D4 is a diode which is used to bypass

the charge in C3 to VCC line when VCC is off.

24A

.

The reason why the reset signal is required at power on is to
hold it in the standby mode so as to avoid malfunction in
the floppy disk controller inside the floppy disk unit.

{3) Regulated power supply circuit

TR1

VD {+5V) tome—g 5vC

R13

&= 5VB

Fig. 3 Regulated power supply circuit

Fig.3 shows the regulated voltage supply circuit. In this
circuit, floppy disk unit’s 5VC (5V of amp) is supplied
from VP._ (battery voltage), because 5VC can not be sup-
plied from VCC on account of current restriction.

For the voltage of 5VC is used with a voltage difference of
0.5V minimum against VCC, the power is produced in
reference to 5VB through the differentiation circuit com-
posed of TR2 and TR3, not merely the regulator circuit.
5V B is a transistor output which is employed to turn on/off
VCC with the MOTOR ON signal, and it has less voltage
drop caused in the transistor, as compared with VCC. So,
D1 is inserted to the output voltage feedback transistor
TR3 to correct 5VC to be 0.2 to 0.3 volts higher then 5VB
in appearance. (A schottky barrier diode is used for D1.)

HARDWARE OF PERIPHERAL DEVICES

8.2.5 Brief description of floppy
disk drive

The floppy disk controller is implemented within the 2.5
floppy disk drive, and the floppy disk driving and head
seeking are done by one motor. The floppy disk is driven
by the belt and the head is seeked using the solenoid and
cam.

The floppy disk controller and its peripheral logic are
contained in a single chip gate array (2700 gates) and the
read/write amplifier is also in a single chip LSI, which are
directly bus connected to permit a low voltage driving.
Floppy disk format and write method are unique to the
floppy disk. Though the floppy disk drive is for one-sided
operation, both sides of the media can be used.

Specification of FDU 250
1} Memory capacity:
64KB (512 Bytes/sector, 8 sectors/track)
2) Recording method:
GCR {4/5)
3) Transfer speed:
250K bits (25K Bytes/sec)
4) Track density:
48 TP1
5} Total tracks:
16
6) Revolutions:
270 rpm
7} Access time:
One step 80 milliseconds from track 00 to track 15.
170 miiliseconds to restore from track 15 to track 00.
Settling time:
50 milliseconds
8) Motor startup time:
0.5 second
NQTE: GCR is an abbreviation of of Group Coded Re-
cording. A single byte, 8 bits, data are divided into
two 4-bit data which is also converted onto a 5-bit
data, Thus, a single byte (8 bits) is recorded on the
media as a 10-bit data.

g

HARDWARE OF PERIPHERAL DEVICES

8.3 CE-1600M
8.3.1 Specifications

Product name: Program module

Model name: CE-1600M

Type: Module (RAM)

Capacity: 32KB

Backup battery: 3V(DC) lithium battery (CR2032 x 1)

Battery life: About 5 years in the pocket computer, or,
about 24 month when removed from the
pocket computer under temperature of 20°C.
(Subject to variation depending on the usage
and environment.)

Operating temperature: 0 to 40°C

Physical dimensions: 40.9mm (W) x 42.8 mm (D) x 85

mm (H)

Weight: 15 grams, including the battery cell

Accessories: Case, cover label (x 3), space cover, lithium
battery {in the main unit), instruction book.

8.3.2 Parts identification

Protect switch Terminal cover

Space cover

Protect switch

When the switch is set to the side marked with ‘'@,

memory write is prohibited so that it disables to write,

erase, and revise the memory contents.

When the switch is at the side not marked, the write protect

is cleared.

* When it has been write protected, cover the switch with
the cover label to avoid incidental manipulation of the
switch.

) Cover label

8.3.3 Use

This RAM module may be used in the following way:

(D For expansion of user’s area,

(® For program module separate from the computer's
internal memory.

(® RAM file

The INIT statement of BASIC must be used to assign it to

the above mode.

User area ¢
The maximum size of the user memory run under the
PC-1600 memory only is 11,834 bytes. {Fig.1) If the
machine language area is reserved or a buffer is reserved -
using the command ‘MAXFILES' or ‘INIT”COMn:"”, it wiii

become less than 11,834 bytes.

CO0O00H
Header
C000H
Reserve area
CO0C5H 1
BASIC text ares User area,
11,834 bytes
maximum
(EFOOH) Variable Iarea
Work area
FFFFH

Fig. 1 Bank O user area map

coton Header
CO000H
Reserve area
COCS5H
Machine language area
BASIC text area
(EFOOH) Variable r area
Work area
FFFFH

Fig, 2 Bank O user area map

Expansion of user area

When “M" is specified with the INIT statement after
connecting the RAM module into the memory slot, the
computer will acknowledge the RAM module as the user
area.

(Stot 1) (Slot 2}
8000H - . -
CO000H

~
Computer internal memory
FFFFH

Fig. 3 Computer internal y and y siot y map

HARDWARE OF PERIPHERAL DEVICES

When the CE-1600M is connected to S2:

8000H
CO000H
User area
(44,612 bytes,
{EFOOH) maximum?
FFFFH
{Bank 0) (Bank 2) {Bank 3)

When the CE-1600M is connected to S1:

8000H
BOOOH /
User erea
(EFOOH) (44,612 bytes, maximum)
FFFFH

{Bank 0} {Bank 1}

When the CE-159 is connected to S1: and the CE-1600M is
connected to S2:

8000H
A000H /
CO00H L
User area
(52,794 bytes,
(FOOOH) maximum)
FFFFH
{Bank 0) {Bank 2) {Bank 3)

When the RAM module is connected to both slots of S1:
and S2:, connection is made from the smallest memory
moduie to larger module and to the main memory. if they
have the same capacity, connection is made in order of S1:,
S2: and main memory. A larger capacity memory must be
the CE-161 or CE-1600M, Otherwise, the control assumes
as if only the larger module is connected.

HARDWARE OF PERIPHERAL DEVICES

Program module

The program moduies discussed here is the one that used as
a software cartridge. The already compiled programs are
stored in the module and connected with the computer for
operation.

Assume now that there are five program modules as an
example,

PC-1600

Game Scientific | Calories Com- Seles
software |calculation|computing|munication] statistic
software | software | software | software

A B C D E

Program modules

According to the need, the desired program module is
connected for an immediate program execution,

@ Two program modules can be used at the same time.

@ When used as the program module, no user area can be
contained. But, if the module has been divided into a
program module and a user area using the INIT state-
ment, only the declared user area conforms to the user
area of (1),

(3) Creating the program module.
After declaring the program area with the INIT state-
ment, the program is written or loaded to that area.

(® The memory protected CE-159, CE-161, or CE-1600M
must be used for the program module,

RAM file module

With this usage, the completed program or data are saved

into the memory module, to be loaded onto the user area

when so required.

If used as a RAM module, the module is not included in the

area.

(D) The module that can be used the RAM file module is
the CE-161 and CE-1600M.

(@) The RAM file module can be accessed free from the
main unit. While it is removed from the main unit, the
contents are retained by the internal battery.

® What program and data are contained within the RAM

file module can be known by means of the FILES
statement or LFILES statement. It is possible to change
the name or delete the program or data,

HARDWARE OF PERIPHERAL DEVICES

8.4 CE-1620M/CE-1601E/PROM PROGRAMMER

8.4.1 Specifications of CE-1620M

Product name: PROM module
Model name: CE-1620M

Type: Module (EPROM)
Capacity: 32 KB

Operating temperature: 0 to 40°C
External dimensions: 40.9 mm (W) X 42.8 mm (D) x 8.5 mm (H)

Weight: . Approx. 12 g

8.4.2 Program Transfer to PROM Writer
Turn off the power of the PC-1600 and the PROM writer, then connect them through the CE-1603L
cable. Use the BASIC program listed in the next section 8.4.3 to transfer your program data to the

PROM writer. ,

PC-1600(K)
L1 CE-1603L .
4 —

CE-1600M H

PROM writer

T
I

nK4

HARDWARE OF PERIPHERAL DEVICES

8.4.3 Transfer Program

10 RER xxx INTEL HEX FORMAT UPLOAN PROGRAM xxx
20301 As(@) 28y

SEISETCOM “COMLI ", a480u .- ,5, 7 2

4@:; SETDEY Loz, PO

SR 0UTSTRAT “COoMi ",

B6@2:REM x MAIN X

7 ReGOSU3 LT

RA1B=F-1+1: [F B>LSLET B=16:43(@2)=":18":60T0 110
@1 [F B(GTHEN “R*"
123:85(@Y="3:8"+HEXs B

119:0606UB 328:03(B)=0S(8)+"088"

120:REM % DATA SENO X

130:5=0

148: [F B(O1BTHEN 168

15@:G0SI1IB S08:G0OSUB S@@:G0T0 210
168:F0OR 1=QT0 B-1

170:D=PEEK# (K,A):G=G+D

18u: [F DCLBLET aAas@r=as@r+ g~
19€:As3(@)=as (@) +HEXs DiA=A+1

20G:NEXT 1
210:S=S+B+AH+AL
220:1GL=256~(S~INT (S,/256)%256)

23@; IF LEN HEX$ SL=1LET As(@i =as(gr+"g"
240:Q3(B>=A3(B3+RIGHTs (HEX$ SL,2)
2%3:REM x SEND DATA X
260 LPRINT As$(B)
265:PRINT as(@)
2783 [F A-1<>ETHEN 88
Z8BIREM Xx END X%

290:LPRINT :@3000001FF"
30V BEEP 2
318:END

320:REM xx ADDR OUT xxX

338:R00Rs=HEXs A

34@:1.=LEN ADORs

358: [F L=4THEN 320

368:FOR I=0T0 3-L:A$(B)=Aas(@)+ "B INEXT I
378:025(8>=As(8) +ADDRs

38@:AH=INT (A-25B):aL=A-AHX256

3390:RETURN

48@: " I "REM ¥ INPUT BANK,AROIR x
410:CLS 3PRINT ¢ Xxx UPLOAD Xxxx*
42@:0N ERROR GOTO "H»

43@: [NPUT ™ BANK No. #";K

44@: [NPUT ~ START ADBDR ";A

45@: [NPUT ™ END ADDR "3 E

46@: 0N ERROR GOTO @

42783 RETURN

48@: “H"REM x INPUT ERROR x
49@:RESUME 1"

5@3:REM

505:Ss=""

518:FOR [=8T0 2

S2@:D=PEEK# (K,A):5=S+0

53@: [F DCIBLET Ss$=S53+"0"
54¥:1S98=C3+HEXS D1A=0+1INEXT I
558:A3(B)=A%(Q) +SS

568:RE TURN

HARDWARE OF PERIPHERAL DEVICES

8.4.4 Writing and Erasing of CE-1620M

To write to CE-1620M, connect it through CE-1601E to the PROM writer as shown below. To erase the
contents of CE-1620M by ultraviolet rays, remove the front cover of the CE-1620M.

CE-1620M

CE-1601E

g

PROM writer

8.4.5 Recommended EPROM Programmer
In principle, you can use any EPROM programmer if it supports FUJITSU 27C256. However, we

recommend the following products of Data I/0O Corp. This recommendation is based on permission
from FUJITSU Ltd. and Data I/O Corp.
Recommended modei: Model 29B or Model 201

The following address list may help you find your nearest Data /O office.

nren

HARDWARE OF PERIPHERAL DEVICES

DATA I/0 Corporation
10525 Willows Road N.E.
P.0.Box 97046
Redmond, WA 98073-9746
{206) 881-6444
Telex Dom. 15-2167,

int'l 4740166 dio ui
Fax {206) 882-1043

WESTERN REGION

Data I1O

3505 Cadillac Avenue
Suite L-1

Casta Mesa, CA 92626
{714) 662-1182 (Sales)
{714) 662-2498 (Service)

EASTERN REGION

Data I/O

Birch Pond Business Center
22 Cotton Road

Nashua, NH 03063

(603) 889-8511 (Sales)

{603) 889-8513 (Service)
Telex 943431

CENTRAL REGION

Data /O

701 N. Glenville Drive
Suite 101

Richardson, TX 75081
(214) 235-0044

Telex 792474

TWX 910-997-1767

ALABAMA

Pen Tech Associates
Huntsville, AL

(205) 881-8298

Telex 62826048

ALASKA
Northwest T & M
Beaverton, OR
(503) 646-9966
Telex 910-467-8775

ARIZONA

Zeus Electronics, Inc.
Phoenix, AZ

(602) 263-6022
1-800-528-4512

Telex 910-951-1362

ARKANSAS
Testech, Inc.
Richardson, TX
(214) 644-5010

CALIFORNIA, NORTHERN

Data 1/0
Santa Clara, CA
{408) 727-0641

CALIFORNIA, SOUTHERN
Data 11O

Costa Mesa, CA

{714) 662-1182

COLORADO

Zeus Electronics, Inc.
Denver, CO

{303) 321-4246
1-800-521-4512

CONNECTICUT
Data I/0
Nashua, NH
(603) 889-8511
Telex 943431

DELAWARE
Scl-Rep
Ballimore Office
(301) 321-1411

FLORIDA

Pen Tech Associates
Deerfield Beach, FL
(305) 421-4989

Casselberry, FL
(305) 678-6809
Telex 62821019

FLORIDA, NORTHERN
Pen Tech Associates
Huntsville, AL

{205) 881-9298

Telex 628260458

GEORGIA

Pen Tech Associates
Marletta, GA

(404) 424-1931

Telex 62826058

HAWAII
Northwest T & M
Beaverton, OR
(503) 646-9966
Telex 910-467-8775

iDAHO

Zeus Electronics, Inc.
Salt Lake City, UT
(801) 534-0500

(801) 634-0503

ILLINOIS, NOTHERN
Torkelson Associates
Deerfield, 1L

{312} 945-8700

Telex 910-992-1438

ILLINOIS, SOUTHERN

Palatine Eng. & Sales
Hazelwood, MO

(314) 839-0800

Telex 910-762-0627

Blue Spring, MO
(816) 229-4007

INDIANA

Torkelson Associates
{ndianapolis, IN

{317) 244-7867

Telex 810-341-3141

IOWA

Tarkelson Associates
Cedar Rapids, IL
{319} 373-0200

KANSAS

Palatine Eng. & Sales
Hazelwood, MO

(314) 839-0800

Telex 910-762-0627

Bule ‘Sp_ring, MO
(816) 229-4007

KENTUCKY, EASTERN

Electro Sales Associates
Allison Park, PA
{412) 487-3801

LOUISIANA
Testech, Inc.

Houston, TX
{713) 956-0837

MAINE

Data 11O
Nashua, NH
{603) 889-8511
Telex 943431

MARYLAND
Scl-Rep
Baltimore Office
(301) 321-1411
(301) 666-5223

MASSACHUSETTS

Data I/O
Nashua, NH
{603) 889-8511
Telex 943431

MICHIGAN

Electro Sales Associates
Livonia, M

(313) 474-7320

Telex 510-1006711

Portage, Ml
(616) 323-2416

MINNESOTA

Torkelson Associates
Minneapolls, MN
(612) 835-2414

Telex 910-676-2740

MISSISSIPPI

Pen Tech Associates
Huntsville, AL

{205) 881-9298

Telex 62826048

MISSOURI

Palatine Eng. & Sales
Hazelwood, MO

{314} 839-0800

Telex 910-762-0627

Blue Spring, MO
(816) 229-4007

MONTANA

Zeus Electronics, Inc.
Salt Lake City, UT
{801) 534-0500

{801) 534-0503

NEBRASKA

Palatine Eng. & Sales
Hazelwood, MO

{314) 8338-0800

Telex 910-762-0627

Blue Spring, MO
(816) 229-4007

25K

HARDWARE OF PERIPHERAL DEVICES

NEVADA

Zeus Electronics, Inc.
Phoenix, AZ

(602) 263-6022
1-800-528-4512

Telex 910-951-1362

NEW HAMPSHIRE

Data I/O
Nashua, NH
(602) 889-8511
Telex 943431

NEW JERSEY, NORTHERN

Data I/O
1-800-858-5803

NEW JERSEY, SOUTHERN

Scl-Rep, Inc.
Pennsauken, NJ
(609) 662-5222
Telex 710-892-1297

NEW MEXICO

Zeus Electronics, Inc.
Albuquerque, NM
(505) 842-6633
1-800-528-4512

NEW YORK, METRO

Data I/0
1-800-858-5803

NEW YORK, UPSTATE

DB Associates, Inc.
Fayettevile, NY
{315) 446-0220

NORTH CAROLINA

Pen Tech Associates
Greensboro, NC
(919) 852-6000

(305) 645-3444

Telex 62826053

HARDWARE OF PERIPHERAL DEVIGES

NORTH DAKOTA
Torkelson Associates
Minneapolls, MN
(612) 835-2414

Telex 910-576-2740

CHIO

Electro Sales Associates
Dayton, OH

(513) 426-6551

Telex 510-1001610

Chesterland, OH
(216) 729-0190

OKLAHOMA
Testech, Inc.
Tulsa, OK
(918) 665-7788

OREGON
Northwest T & M
Beaverton, OR
(503) 646-9966
Telex 910-467-8775

PENNSYLVANIA, WESTERN
Electro Sales Associates
Allison Park, PA

{412) 487-3801

PENNSYLVANIA, EASTERN

Scl-Rep, Inc.
Pennsauken, NJ
(609) 662-5222
Telex 710-892-1297

PUERTO RICO
Data I/O
Nashua, NH
(603) 889-8511
Telex 943431

RHODE ISLAND
Data IO
Nashua, NH
(603) 889-8511
Telex 943431

SOUTH CAROLINA
Pen Tech Associates
Greensboro, NC
{919) 852-6000

(305) 645-3444

Telex 62826053

SOUTH DAKOTA
Torkeison Associates
Minneapolls, MN
(612) 835-2414

Telex 910-576-2740

TENNESSEE

Pen Tech Associates
Marletta, GA

(404) 424-1931

Telex 6286058

Huntsville, AL
{205) 881-9298
Telex 62826048

TEXAS
Testech, Inc.
Richardson, TX
(214) 644-5010

Houston, TX
{713) 956-0837

Austin, TX
(612) 327-7033

TEXAS, EL PASO CO.

Zeus Electronics, Inc.
Albuguerque, NM
(505) 842-6633
1-800-528-4512

UTAH

Zeus Electronics, Inc.
Salt Lake City, UT
(801) 534-0500

(801) 534-0503

I

VERMONT
Data I/0O
Nashua, NH
(603) 889-8511
Telex 943431

VIRGINIA
Scl-Rep, inc.
Falrfax, VA

(703) 385-0600
Telex 710-833-0361

WASHINGTON, WESTERN
SPOKANE

Northwest, T & M
Redmond, WA

{206) 881-8857

WASHINGTON,
TRI-CITIES, VANCOUVER
Northwest T & M
Beaverton, OR

(503) 646-9966

Telex 910-467-8775

WASHINGTON D.C.
Scl-Rep, Inc.

Falrfax, VA

(703) 385-0600
Telex 710-833-0361

WEST VIRGINIA

Electro Sales Associates
Allison Park, PA

(412) 487-3801

WISCONSIN

Torkelson Associates
Waukesah, WI
(414) 784-7736

WYOMING

Zeus Electronics, Inc.
Denver, CO

(303) 321-4246
1-800-521-4512

U.S. SERVICE CENTERS
(206) 881-6444
(408) 727-0659
(714) 662-2498
(603) 839-8513
(214) 235-0044

Redmond, WA
Santa Clara, CA
Costa Mesa, CA
Nashua, NH
Richardson, TX

U.S. CORPORATE OFFICE

Data /O Corporation
10525 Willows Road N.E.
P.0.Box 97046
Redmond, WA 98073-9746
{206) 881-6444
Telex Dom. 15-2167,

Int'l 4740166 DIO Ul
FAX (206) 882-1043

EUROPE

Data I/O Europe
World Trade Center
Strawinskylaan 633
1077 XX Amsterdam
The Netherlands

{20) 622866

Telex 16616 DATIO NL
FAX 020-627255

FEDERAL REPUBLIC OF
GERMANY

Data I/0 Germany GmbH
Bahnhofstrasse 3

D-6453 Sellgenstadt

Federal Repubilic of Germany
(6182) 3088/89

Telex 4184962 DATA D

JAPAN

Data I/O Japan Company, Ltd.

Ginza Orient Bldg. 6F
8-9-13, Ginza, Chuo-ku
Tokyo 104 Japan

(03) 574-0211

Telex 2522685 DATAIO J
FAX 0118135740280

AUSTRALIA

Anltech
Adelalde

{08) 356-7333
Telex AAB2579

Anltech

Brisbane

{07) 275-1766

Telex AA40141/AAB1052

Anltech
Melbourne

(03) 795-9011
Telex AA31370

Anitech

Sydney

{02) 848-1711
Telex AA120238

Anltech

Perth

{08) 277-7000
Telex AA92908

Anltech

Corporate Office
Lidcombe, N.S.W. 2141
(02) 647-2266

Telex AA121299

AUSTRIA

Ing. Ernst Steiner
A-1130 Wien

(222) 827474
Telex 135026 ES A

OR7

HARDWARE OF PERIPHERAL DEVICES

BELGIUM

Slmac Electronics
B-1210 Brussels

(2) 2192451

Telex 23662 SIMEIP B

BRAZIL

Sistronics Instrumentacao E
Sistemas Ltdg.

04726 Sao Paulo SP

(11) 247-6588

Telex (011) 38044

Newtec Produtos Electronicos
Ltda.

20.511-Rio de Janeiro-RJ

{(21) 284-1248+

Telex {021) 33619

CANADA

Allan Crawford Associates
Mississauga, Ontario L4Z1Y2
{416} 890-2010

Telex 06 961235

Allan Crawford Associates
Ottawa, Ontario K2B8K2
(613) 596-3300

Telex 063 3600

Alfan Crawford Associates
St. Laurent, P.Q. H4T 1E7
{(Montreal)

(514) 731-8564

Telex 05-824944

Allan Crawford Associates
Calgary, Alberta T2E 675
{403) 291-3417

Telex 03 821186

Allan Crawford Associates
Burnaby, B.C. V6CBA7
(604) 294-1326

Telex 04 54247

HARDWARE OF PERIPHERAL DEVICES

CHINA

Dorado Company

Seattle, WA 98104

{206) 583-0000

Telex 329473 (Burgess Sea)
880212 (DORADO CO UD)

Kowloon, Hong Kong
(3) 770-2021
Telex 47833 (RULIN HX)

Beljing, The People’s Rep.
of China

507766 (Ext. 4017)

Telex 22163 TOMEN CN

DENMARK

ITT Muitikomponent A/S
DK-2600 Glostrup

(2) 451822

Telex 33355 ITT DL

FAX 45 07 86

FINLAND

instrumentarium Elektroniikka
SF-02631 Espoo 63

(0) 5284312

Telex 124426 HAVUL SF

FAX 09-358-0-524986

FRANCE

M.B. Electronique
F-78530, Buc

(1) 39568141

Telex 695414 MB F

GERMANY, FEDERAL
REPUBLIC OF

Instrumatic Electronic GmbH
D-8032 Graefelfing

(89) 85802-0

Telex 524298 INSTR D

GREECE

Eletronics Ltd.

GR-106 75 Athens 139

(1) 7249511/15 or 7210669
Telex 216589 DARX GR

HONG KONG

Eurotherm (Far East) Ltd.
Aberdeen

5-546391

Telex 72449 EFELD HX

INDIA

Transmarketing Private Ltd.
Bombay 40018

MEXICO

Christensen, S.A.
06470-Mexico, D.F.
546-25-95, 546-29-55
Telex 017-75612 Mycome

NETHERLANDS

Simac Electronics
5503HR Veldhoven

022 4921874, 4920320 or 4926044 {40) 582911

Telex 011 73724 TMPL IN

Bangalore
560-046

ISRAEL

Telsys Ltd.

IL-69010 Tel-Aviv

(3) 494891/5 or

{3) 494881 and 2

Telex 371279 TLSYS IL or
32392 TSEE IL

FAX 972-3-497407

ITALY

Sistrel SPA

1-00143 Roma

(6) 5915551

Telex 680356 SISTRL |

Sistrel SPA

1-20092 Cinisello Balsamo (M)
(2) 6120129 or 618193

Telex 334643 SISTRL |

KOREA

Elcom Systems Inc.
Seoul ZIP135

(2) B55-5222

Telex K25227

MALAYSIA

GEA Technology PTE., Ltd.
Singapore 0511

65 2729412

Telex RS 37162

Nnco

Telex 51037 SIMAC NL

NEW ZEALAND
Warburton Franki, Ltd.
Auckland

(649) 444-2645

Telex NZ 60893

NORWAY

Teleinstrument A/S
N-1371 Asker

(2) 789460

Telex 72919 TELIN N

PORTUGAL

Decada Espectral
P-1495 Lisbhoa

{1) 2103420

Telex 15515 ESPEC P

SINGAPORE

GEA Technology PTE., Lid.
(65) 2729412 :
Telex RS 37162

SOUTH AFRICA
Electronic Building
Elements (PTY), Ltd. (EBE)
Pretorla 0001

(12) 46-9221/7

Telex 3 227868

SPAIN

Unitornics

Madrid-13

(1) 2425204

Telex 22596 UTRON E or
46786 UTRON E

SWEDEN

Macrotek AB
172 02 Sundbyberg
~(8) 7330220

Telex 12543 MATEK S

SWITZERLAND

Instrumatic SA
CH-1207 Geneve

{(22) 360830

Telex 28667 INSR CH

Instrumatic AG
CH-8800 Thalwll/ZH

{1) 7231410

Telex 826801 INBC CH

TAIWAN
Sertek International, Inc.
Taipei, 10479, R.O.C.
(2) 5010055
Telex 23756 SERTEK

THAILAND

Dynamic Supply Engineering
R.O.P.

Bangkok 10110

(2) 3928532, 3925313 or 3919571
Telex 82455 DYNASUP TH

TURKEY

Data I/O Europe
(20) 622866

UNITED KINGDOM
Microsystem Services
High Wycombe

(494) 41661

Telex 837187 MICSYS G

Addresses on this list subject to
change without notice.

ORQ

HARDWARE OF PERIPHERAL DEVICES

HARDWARE OF PERIPHERAL DEVICES

8.5 CE-1600L/CE-1601T

8.6 CE-1601L ... CE-1605L
(1) CE-1601L

Pin description

Pin No. Signal name
1 RD
2 GND
3 SD
4 Vee
5 Vee

PC-1600 MODEM SIDE
Pin No. Signal name Pin No, Signal name
1 FG FG 1
2 SD TXD(SD) 2
3 RD RXD(RD) 3
4 RS RTS(RS) 4
5 cs CTS(CS) 5
6 DR DSR(DR) 6
7 GND SG 7
8 CDh CD 8
14 ER DTR(ER) 20
9 CI Ci 22
(2) CE-1602L
Pin description
PC-1600 MZ-5600, M2-5500
Pin No, Signal name Pin No. Signal name
3 RXD(RD) SD 2
2 TXD(SD) RD 3
8 CD RS 4
1 RTS(RS) CS 5
5 CTS8(CS) READY 6
i SG GND 7
14 DTR(ER) DR 8
6 DSR(DR) ER 12

6N

HARDWARE OF PERIPHE

(3) CE-1603L

Pin description

PC-1600 PC-5000, CE-158

Pin No. Signal name Pin No. Signal name
1 FG FG 1
3 RXD(RD) TXD 2
2 TXD(SD) RXD 3
8 CDh RTS 1
8 CD CTS 5
14 DTR(ER) DSR 6
7 sG GND 7
1 RTS(RS) €D 8
(RR) 11
5 CTS(CS) DTR 20

{4) CE-1605L

Pin discription

PC-1600 Open side

Pin No. Signal name Pin No. Color
1 FG FG Sield
3 RXD (RD) TXD Orange
2 TXD (SD) RXD Red
8 CD RTS Gray
8 CD CTS Gray
14 DTR (ER) DSR Cvau
7 SG GND Purple
4 RTS (RS) CD Yellow
5 CTS (CS) DTR Pink

8.7 CE-160CA

_8.7.1 Connection

Car battery adapter
CE-160CA

Cigarette lighter plug

=)
AC power adapter
Computer, etc. connector

Cigarette lighter outlet
{120r24V DC)

ne4

HARDWARE OF PERIPHERAL DEVICES

8.7.2 Specifications

Model name: CE-160CA {(Car battery adapter)
input voltage: 12t0 24 V DC

Qutput voltage: 8.4V DC

Qutput current: 1A

Operating temperature: 0 to 40°C {Storage: —20 to 60°C)

External dimensions: 52 mm (W) X 76 mm (D) x 46 mm (H)

Weight: Approx. 200 g

Connectable devices: PC-1600, CE-1600P, CE-140P, PC-1500/PC-1500A, CE-150, etc.

nen

CHAPTER

CIRCUIT DIAGRAM

Notes 1. The names of the parts given in the following circuit diagrams are
merely the general names of the parts.

2. The circuit diagrams are subiject to change to functionally equivalent
ones without notice.

nen

Unit code: DUNTKI035ECZ7

n
Ef Part rame
ND. F s]
VEECM-63 o)
161 |scia My = © o
5 2 e b o)
12| LHses SHocKt-a2 EEC 1 h >
IC3 | LUsI8I13P b p g <yCCCNe-17
A ; e =l =
¥ e PIOEICN2 -
DMEMCH2 -42 b ?l -u —
IC5 }IRSIN e [AR QICN2 ~ 45 H ¢ e =
Ri~16 | 00KB £ 5 % L/I0W X T O N =
Rit [17KQ £S5 VIO . (@) 5
R15~38] 100K 0 £ 5 & 1/10W b 8 P C x
o0 [nKaz T8 170w | s = S =
RN (KD & 28 1/10W RTA i - & Q =
R42.43 {100KQ + 5% 1/10W BE?Z((%m-gg e
| S ! -G h 4
Rt [1MO£5 % /IOW e R SICHIAINES g B3 =3)
N -
5 |IKQ 5% (/0W A g <] g a3l e
-~ (OSUCHY-33 4——22 He ol
Ri6~50| 100K + 5 % 1/10W P — i wan O P
PCEICH) 28 4———n PRt GFOICNZ 15 =m0
R3t {10KQ 5% 1/10W PESICH1-29 4= L Y7 [] M 131 ACLICN2- 81
- PAGICHI-1] 4~ g eee Z1 53 Aftone: B @
R52,53 | 10OK 0 + 5% 1/10W PA LCHI-) TE)| pad Pl B -
PAACHI-3 24 HA Za4 ~ARC2ACN2-58 «©
}JM KO 3% 1/10W I &8l z 835558 ¢ KgBy e Y]
157 <59] 100K 0 + 5 & 17100 oasic) ;'3 PAs §i23az138238 01875190 § SEYL s 6 p
C1.2 | 100P+ 3 % CHB0Y PalCNLS 81t sC7852 i — b T
= A et ik fe: i = pho O rorcerie <
o X R o R 111 s g Tkl gy [T
C1.5 | 100P+ 5 % CHSOY KA 07p— BRIMT .,,.F,j}“ =] on s 3
Gt |01 % Klngerr ¢ il) T o] o mcrie @
-19 KIn T — S dglmde].- o VGG e
8.8 |22P% 5 % Chisav ?‘:&‘gﬁ?" 10 - é‘s‘w&o iy %J»i’..’,{' otodu ol 'J:'l : ey =
[Cio.11 | % Cifiov Arcmoig m Lo R n339372227TREC 3L & NN
12 {0.1p 8 ,’\‘2{8{.‘{.,'; bnggDDDn““*“‘ WAL it bo St e P ANRIGS @
3 e e i T : B m——ugty - BEE O
b} 1 5 9 CHI-3 L ———————— > ANCN2- 6
i E’ﬂ — 2 LR 38 Kl SKOCNZ 34 68
= X1 | CSA series 3.58M WhcH-n oL IXDXCHY 41T il (c'?‘” [E——AR eIt ’
= TR 4 74 2421 X2, Anald 2CH2 36 D
X2 [C8A series 2.6M -1 ft LK T 2224
: = ; : MV o a——it g =2
Covered by shrigking tube [: A A a2 > .
x .‘ixBlypegZ.ﬁSK B 65 | RIS P&"‘g o iooo o A i %A PARALNR 21 -—————-L——-——-——p:?:gf;';s @
EERER YD 034012343850 DN (e— PAIIKNZ 76
| Xt |CSBseries 129 N YU R E e e A — pAaENz 17 S
N o P 1
Q1 {25DId8 ahols 1 o »R\aens 19
Y $OS g [ages 20 PSOMCHD-02 ~————a15CH2 B8
RED JIKQ+ 544N S el x AROACHZ0) | T 00N ot
- - L i ME ol bl —SOFCN2 -1t -HDIIENZ 51
R61 |B6KQ+ 5% YW L o 8 fivE] 2 IRCFICN2-12 Y - P40 2(LN2 52
ooCNi-18 se—| VEC "ﬁ" rapIenz 3
gocN 1 ov] up-an (T 5
pacni-21 b—] L i - *DECN? 56
DJ:CC:::g e G SPUCN2 »4D MCH ST
BEa 2 “ T l
S o l sECRiCHy 43
HeNt 20 22) l l °ng:J'CNA“W
4 v e e
RAICH1.4 STAkens 05
c‘s\A(‘ch»w + %\%&2‘)ﬂlt
PEVICNT 53 oI)
b Lz 08
CDACH? 87
SACHNZ 05

e

2
s) R S RE U

REVAVS

Unit code _ DUNTRIOMECZZ
Board name QPWBFINIIECZZ

3 R2

Fan No. Part pame

161 |6k SRAM

1C2 |61K SRAM

€3 [k Row

IC1 | 236K ROM2 1 {VGG

IC5 |26K ROM3 | 2] —

R [10KQ+35 % £10W 3’1‘*";3“‘

Ry |10KQ+S5110W | =gy j

a jolr 6 [LHASOl—

2 o1 AVNT)
81A13A —-«J
9 R0 M ! 0 -9
Hﬁ) ﬁ:g RAM1 L ROM2 J L ROM3
1
2]57] . —ne - veg VPP vCO vep vee
T3l D6 ———A12 WH— A2 Al4 A12 A14

N A7 cs2| N

14 D5 ———{a7 Al [——A7 A13
5. D4 —A6 A8Tasd A6 A8 - AS Asa
R ﬁas A‘:‘j F A5 A9 AS A9
1T NH . A4 ALY Ad AI—
181 vee | L ——A3 OF g A3 OF A3 OEMS
19IGND 5T | £2) | A2 A10 ,——a2 Al0 Az A
20 51 g v W<) CEp=e | =41 €
20 D2 4 L —Af D7 [——2e o7
LR \ Do D6 pp D &f—| D¢ D6
23,08 ot DS Dt D5 D1 D5
24/A0 2,3 D4 D2 D 4]~ D2 D4
SEla Y D D3 GND D 3 cND D3
26/ A 2 IC1 -~
27|A 3 1C 4 R123SIR3 1IC5
28|A 4
29|1A5 | '
130|A6 /] J J
31[A7 /] Z
2l1A12
365123
AA14 j
35/A15
36553

AGA

wieabBeiq Hn241) Alowdp (2)

WYH9YIa LINJYID

Uit code: DUNTKI1020ECZZ

A e R

wesbeiq unan) As) (g)

WyH9YIa LINJYID

fim Part name
ICi [Hos1203
iIcz_[iiDen LF7204E
Ica [upsn0z
IC4 | TC8576
R [3.6K0E5% 1/10W
R2 {3.6KQ+5Y% 1/10W
R3 {IKQ+5 % 1/10W
R 3.6K0+5% 110w
RS [3.6KQ+5% 1/10W
RE [100K0+ 5% 1/10W
R1|100KQ £ 5% 1/10W
R8 |100KQ+ 5K 1/10W
RS [100KO+ 5% 1/10W HDB11D 2 12
R10 [100KQ 2 5% 1/10W g
VEEGCT
R [IKQ+5% 1/10W 991 133 990
Ri2_ [IKO+5% 1/10W RL21D} 2 A
Cl |in
€2 gy
) €3 jip
) c1 |1
4 &0 VEE(CNI-639
L] VCCENI-8 10—
C6 0.1 AN 4a
(CN1-42)
c1 [01g 136 Ll PBECH3- 10
VR 2K VR mm)-:—v——--—— I ST EE |
SP | Buner dein 1o 4 N
i — et M LN
5| R SE— i e 8 :
DCNI 1 She——— (P o— TC8576F n% ;
S(CHI 22 e e] ic4 Ba 2
LA F TS E— N 2 Al ;
o IS — (CN 1294 i} i
L —) f I
i 2 Gk 7] s
-rullmz
RIN INTRLNI- 27 NoLER 03
S 2’},}@‘125 KINTICN] - 10—y
€ SACH -
5 RRhCN 43
CN1 -4
RI2 1
FCNI-6 7P -5
”‘““"}é‘
%@4‘1%&

Part name

Hybrid (C2

Hybrid IC1

Digitral transistor

Digitral ist

Digitral traasistor

Digitral transistor

NKa

15KQ

2Ke

Ceramics A10P

5.3V 474

N EEY
6.3V 22

10V 415

O.lp

0.1y

10V 224

10V 22

0.01 uF

Coavorter transformer

ALINII2 24
(OS2 -
Dobe 2 13 T 1

5
AW NZ 37
JENZ - z

i [L |
B |

_[Noise filter

1111q03

10EIN

Reset SW
RS-2%2C

N6 |ANALOG

10EIN

10BIN

FIVER

SLOTH

N9 [SYSTEM BLS

$L,0T2

Adaptor

VGOICH2 184

YCCILHZ 7« T

GHDWHZ 16

FOALN:

DN
—415DA SO

OA

)

2

q BAICHD
AT NG
%5-\((.!!2
RALLNZ

8
o
Shag

COMH BT
OTfae w2 a9» T
QLN 134

F4
S
<
mmDO0!
mMIT—c

OCCCOOD!

NV A i = D

>

PRICH2 D8>)

ROFICN2 -12+

SDFUH2 -1 ¥

AINCN2 109 —

AM YD 28

3¢

Iy

‘ ACLICN2-91

>

oo
O

CUT,

i

T

LBicn2-1

[ARRR!

sLot?

HENES

i

RSTECH2 62

29

YN,

[W

s

Aldnd

| PR}

_J.J

S

by

AT
LT
S50

NEEN]
=

~J:

(TTTTTTT.

 udnd

i

.

oy ay
s
S P

1 £

B

IR

b
s
=0
rii

(Treree

1T

0

Fidslon- P

I

Y
{

IOROICHZ-49
A (iniCh 0

MToyrn2+46 L
1RQNZ4 e

-O
el

o
z

[

K

EF

WAIT NS 47— | |- |37

\F

b

T

8

bk 2

weR v g X

>
Rt eyt
B EEEER G

—0.., o—1={~

S

EEWELY

s 101

T3

E I,

a
S
BITBEINUHTINRCEECSS

|

|

i
Lt
e
G

N P e
Etatas

B A VG = D £ G NS NI AL

i

Crewr

o ol
!

>
3

.((f{(i‘f(

(2R

Q3

84
Jé

R

KC2((N2 58

8w

B

2 R e —

s

wieibeiqg N2 10308UL0) (1)

o
ol
)
s
—
=
>
o
pe
>
=

oy
d
e
xtern;l Bus J(eopzn € Ve .
(=]
<
RD o— o
CMTout &>
ELH o> E o 9
WR o y =
CMTin < 1]
10RQ. > o
GND <1 l % Hzstt - ema
v)
(]| e
MREQ P> {NZ] Driver
Ve < Wi, U
rs (Ta] wan
vaar < N HREr AMT O Q)
from I | RMEOFY,
PC-1600 Pgol;ﬂ f; Al Gate A e T %:f;— LB1247 (9‘
Ra: ; Gy e
i e e aLe Array mm"'l 1 100% 1 vl <]
T ki EAY 2)] O bt
FGND <y e i L o 1 Az e, 3
S it 1L al LR38045 %]
RSTE Drormmmy DAR202H] P v - 0% oL
Vee b T o 37 10 ¢ v
A RESET X3 CLeF V[REM
2 Ui, 10¢ e Dt jc.m,. CMRISTOR)
D INTY < L 0~ O——rT! L RO—
o JoOK P2 ot i
Doy 2ta Bus oo [N TRE | REZ | cm RET
Py OFF o
Qs Address Bus [ITTT] l]] Ll o AL REMOTE]
[[100K oMot 12K 000&I
-k 2
VP < — I) - 68K LIV MIC
TOJ)I 690n,
GND < |GHD
V- £AR L1® 5
107N < ool __| L o] [T ear
- S Lo
it
£ s
32K8 g—d I
to 2 152 gLet
M-ROM [AL RMIOZ 121
CE-1600F ﬁ AC Adaptor VST B VR i
SC53257F J]% 7 (EA-160) ==t 0n bW .
set6 (4TI 4 |r wz wen
RSTN < TIE B '
DR = fuoy ¥ B I
FGND < A of Ay a2 o
1
| oND
ESDN-140
Vasr * 11,02 : RCILZ 1032CC22
INTF Yo IASCE1600P U anly)
Y2 Ve J1,92 Hothent
GND GND

Wvd9vIad Lind4Id

S3DIAIA TvHIHdIHAd 240 INVHOVIA LINJYHID Z°6

CIRCUIT DIAGRAM

(2) CE-1600F Circuit Diagram

CONZ
CONt CON2 259
50P CONI 522 11 +6V
e THTF] 07 [T 1.8 g D0~D7{ [2[~sv
o ves | 0 6 2] |00~D7 3l ppsr | RLoA
B W1 | D533 AST N 4] GND
Ry CLrk[D4 [4 " % TS50 5| sve
X PT|D3]S 07N - 5 5vB
Bl PUiD2]6 15417 3 AO~A2 1 RD
B Pv |03 |1] [AO~A2 8 w5 AR
F3[FGND) 00 |8 WER ¢ 91 T30
AF GNDIRST NID 1T 7D 10 A0
5 A8 | A7 [0 7 W A1
36{ A9 | A6 1 IRQ 12) A 2
Bl AW AS o W Lgy N3[REST
_{“‘ Ad N3 5] 1DACK
38 A12] A3 4 A 4 +5Y 15 5 0
a0l A13] A 2 |15 q GIEK
41 A1a | A 1 6| 2541286 ;] sVC E
2| 15| 4 0 JI7 TRI 10y Le 5 ig] 03
i3 BFOMREQME R12100¢2 " CRegshon padts 10LF T C1 VB R
44 JORS] 10 TN]S | o m @G—ND_‘ 0 D 5
WA 1T W R @ = 00y { 21 D 6
W6 ELH | R D [=l ShEsz fes o TR
47| GHD | GND [22 L 25C202112 ET
MBl V» [GND P3 R334.7KQ 24 Dk Q
WV .. b L1 = 15158EL1 WD
60 Vp | Vee P9 . &

[aYa¥al

CIRCUIT DIAGRAM

ircuit Diagram

(3) CE-1600M C

V 64K bit SRAM

Tt

F

FEREEERE]
ﬁ

e

Ll =

NNERBERREEDEDE

)

~Jx]e]~[o]<][~[=]=] S]=[S] 2=

LU

Ll

~”

Fp

A

NEEEEEEEERERER

w

| 717t

[l el][] =]2]= GsT

L1

==

4

~ { 1=

NG IQ I/ NS K122 =g

5 =M EI IR S

NEBEEESERRREER

N E] = S

HEPFE MR EER R

o) Y R e O S S Y A B] Bt A
LB

L L)

15598 P

LN LF <= cr202
~———— Ve _{20] ¢—{ Gonp Jao]
L (w =
(__ Ts] L x0T
[[17] A0 a7
0 S Y
{ [15] M Az_T3]
1700 —~_po T4} N[A5 Tad
mm N-1/02 I Ad |33
~1/03— b2 izl M A5 [3)
Ni1/0a— D3 Ju] M as 31
1/05 - 04[] M{ A7 T80
M1/06—{ D5 [8] Md a8 J29]
1707~ D6 [8] N Ag o8]
rl\oml_ D7 7] f At0 [27]
654_,9_:,.109 MREQ |61 PN A]2
.Mm_wwas Wmmmmmmm —{pvour[5] “{ Atz 3]
TCT4HC189F — RAMSN][4] 1! A3 [24]
ﬁ HEEEEERE B [
3 N R w—
Fo% S60K0 YW {_vee Ji] ‘_l._f [21}
Battery side Memory side

NOTE: Replacement is not permitted for the RAM chip as

the wire bonding type RAM chip is used.

CIRCUIT DIAGRAM

{4) CE-1620M Circuit Diagram

{ 119) [E]
— T R o |
7/]}] TZ N \ { lWl\J—f A0 a7}
ERE { [5] MTAT T
ox] S oo
bbb) PR el
— = ~——o01—_D0_[14] P A3 Ta4}
A3 20,06 02

T VHi- e — —02— b1 [1B] NM{ as [s3]
Vecly 27C256-208 [04 1 | o (W w
PyiN VP [LCC—32C-AE1] GND—_/ —o04—{ D3 h:] a6]31]
| ﬁtlz i _ 1 Og ey N—o05 —{ ps_J10] N a7 0]
w = 08 —] D5 _ 191 M as o9}
§22:{:{E§ 5 o7~ D6 8] M As |z}
JJJJJJJ N—o08— b7 {7] N a1 [27]
g T8 MagH
4pvout{s | Mo Az [z}
{RrRamMsN[4] N{ a1z []
| {3} | {28
{PViN J2] l 122}
{vee 1] [[21f

Parts side

271

CIRCUIT DIAGRAM

{5) CE-1610E Circuit Diagram

{vpp)
1 [PVIN_] ¢ VCC__ 128
LA12] [PVouT 1[A14]
1| VeC GND 140
LA7]| [pvin [IWR [A13]
— NC RD
[As | RAMSN | A@ A8 1
Pvour | A1l
[A5] “Himreal | A2 LA9]
D7 A3
LAa | D6 A4 LA]
D5 AS
[A3] D4 26 [RD___ 1(0F)
D3 1
LA2] gz A8 [A1g]
1 AQ .
(At |} |[Deg 210 [RAMSN] (TE)
11
[Ag] A12 (D7 1
A3
(Do] [(Ds |
(D1] 2 21 [D5 |
By
14[GND] (D3 15

277

CHAPTER 10
APPENDICES

273

APPENDICES

10.1 CHARACTER CODE TABLE
Mode 6 Character Code Table

In Mode 0 the PC-1600 character set includes graphic and Greek symbols and international characters
in addition to the normal upper and lower case letters, numbers and symbols. This character set is
similar to the IBM PC character set.

Hex) 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 2 @ P ¢« p C E 4 L4 s =
1 2 1 A Q@ & g U & 1 L F 68 +*
2 " 2 B R b r & £ 6 £ T T I 3
3 # 3 C S c s & &6 4 | F w o n ¢
4 $ 4 D T d v 3 A 4 — E 2 |
5 “ S E U e u & o N A JL F o |
6 & 8 F U f v & 4G 2 m p =
7 7 6 W g w g u 2 3 | $. 01 =
8 *(8 H X h x e § ¢ 3 L & -
) *) 9 I v i y & 0 - 4 F 1+ 38

A x + J z 3z & U - | & r q

B 3 K+ kx v e 5 15 [s ¢
C , <L~ 1 v lEg s 4 @m0
D x- xs M*] m*r 1 o¥ 3 oy =[] & :
E o> N T o A R < d o] o€ e
F /72 0 - ol A 5 > 1 £ @ n

PC-1600 Character Code Table

*These characters are rotated through 90° during vertical printing set with the ROTATE command.

To look up the hexadecimal code corresponding to a character in the table, write down the number at
the head of the column in which the character appears followed by the number on the left of the row
in which the character is. The hexadecimal code for “a” is therefore &61.

Any character in the table can be printed out to the screen using the CHR$ (<character code>)
function in BASIC. Refer to CHR$ in the Command Dictionary for details.

274

APPENDICES

International Character Set

The international characters in the character code table from code value &89 to code value &A8 are
assigned to the alphabetic keys on the keyboard on pressing the KBIl button to the right of the six
function keys. A template is provided with the international characters shown above the correspond-

ing key positions.

Mode 1 Character Code Table

In Mode 1, the PC-1600 character set is modified to make it compatible with the more limited
character set in the PC-1500. The table below gives the nexadecimal value of the character position,
and the corresponding character for Mode 1.

HEXCODE | 27 |SB|5C|{5D|5E|5F| 66| 7B|7C 7D | 7E | 7F

mopEe | I[N T]
MODE 1 JIUELTLN =

10.2 KEY CODE TABLE

(1) Key codes to be retured from KEYDIRECT IOCS routine

il ol 1213 415 6 7 8 9, A B ,C D/ E|F
0 foated SPACE, © P

1 |SHIFT] F1 1A Q

2 |sMALL| F2 2 | B R

3 |CTRL] F3 3 ¢ | s

4 |Kem| F4 4 DT |
5 | BS | F5 5 E | U

6 F6 6 F V

7 76w

g8 | @« lcL (8 H X

9 { RCL|) 9 | A\ ‘

Al % J iz |

B | © |DEF + K

c | » L 5

D |ENTER - = M |

E | ON N 3

F | OFF MODE| / 0

Keys added for PC-1600

97R

APPENDICES

(2) Key codes to be returned from KEYGET and KEYGETR 10CS routines

ot o |1 23|45 |6 |7 |89 | A ;B|C|D|E]|F
0 [NULL

1 |SHIFT| F1
2 [SMALL| F2
3 |CTRL| F3
4 |KBH | F4
5 | BS | F5
6 F6
7

8 | € |cL
9 | & [RCL
Al |l [CA
B | 1 |DEF
c | » |INS
D |ENTER| DEL
E | ON

F | OFF |MODE

® 20H to FFH are the same as the character codes.

276

(3) Key codes in key buffer

APPENDICES

gt o 1 1] 213 456 7 8|9 A |B|C|D|E]|F
0 INuLL|feBeispace 0 | @ | P P

1 ISHFT| F1 | ¢t | 1 | Al Q| a | g

2 |sMALL| F2 | “ | 2 | B | R | b | r

3 {CTRLIF3 | # | 3/ Cc | s | ¢ | s

4 |KBD| F4 | $ | 4 | D | T | d | t

5 |BS|F5 | % | 5 | E | U | e | u

6 F6 | & | 6 | F | V | f | v

7 ! 7 G w g w

8 |« cL| (| 8| H!|! X | h!| x

9 | $ |[RCL|) 9 ! Y i y

A d CA * J Z i z
B | f |DEF| + ;| K| [| k| {

c{®» |INs| , | <L\ | I :

D |eNTRR|DEL| - | = | M | | | m |)

E | ON >IN A]|~

F |OFFMODEl / | 2 0| _ | ° | ®m

e A code between 00H and FFH is stored to the key buffer.
e The blank squares between 00H and 7FH are assigned a space code.
@ The codes from 80H to FFH are aliocated to the international characters and special symbols.

n=7

APPENDICES

10.3 CONNECTOR PIN CONFIGURATION

(1) 60-pin system bus connector

Pin No. Signal name Pin No. Signal name Pin No. Signal name Pin No. Signal name
1 A7 16 PVOUT 31 A8 46 VBAT
2 AB 17 D7 32 A9 47 vp
3 A5 18 D6 33 A10 48 NC
4 A4 19 D5 34 A1 49 MREQ
5 A3 20 D4 35 A12 50 BFO
6 A2 21 D3 36 A13 51 $0S
7 Al 2 D2 37 A14 52 GND
8 A0 23 D1 38 A15 53 GND
9 INTT 24 DO 39 VGG 54 GND
10 (5] 25 INH 40 NC 55 NC
11 vee 26 IORQ 41 vee 56 . DMEO
12 NC 27 CMTIN a2 NC 57 WR
13 RSTE 28 WAIT 43 FG 58 ELH
14 PT 29 CMTOUT a4 FG 59 10E
15 PU 30 IRQ 45 VBAT 60 RD
{2) Memory slot 1 (S1) connector
Pin No. Signal name Pin No. Signal name Pin No. Signal name Pin No. Signal name

1 vece 11 D3 21 NC 31 AB

2 PVIN 12 D2 22 A15 32 A5

3 PU 13 D1 23 A4 33 A4
4 RAM?1 14 DO 24 A13 34 A3

5 PVOUT 15 INH 25 A12 35 A2

6 MREQ 16 KO 26 A11 36 Al

7 D7 17 K1 27 A10 37 A0
8 D6 18 K2 28 A9 38 RD
] D5 19 PT 29 A8 39 WR
10 D4 20 VGG 30 A7 40 GND

278

APPENDICES

(3) Memory slot 2 (S2) connector

Pin No. Signal name Pin No. Signal name Pin No. Signal name Pin No. Signal name
1 vCC 11 D3 21 NC 31 A6
2 PVIN 12 D2 22 A15 32 A5
3 PU 13 D1 23 Al14 33 A4
4 RAM2 14 - Do 24 A13 34 A3
5 PVOUT 15 INH 25 A12 " 35 A2
6 MREQ 16 S1 26 At1l 36 A1l
7 D7 17 s2 27 A10 37 A0
8 D6 18 s3 28 A9 38 RD
9 D5 19 PT 29 A8 39 WR
10 D4 20 VGG 30 A7 40 GND

(4) RS-232C connector and input circuit

RS-232C interface connector pin configuration

Pin NO. Signal name
1 FG.
2 SD (TXD)
3 RD (RXD)
4 RS (RTS)
5 CS (CTS)
6 DS (DSR)
7 SG (GND)
8 CcD
9 cl
10 vCi1
11 NC
12 NC
13 NC
14 ER (DTR)
15 NC

input circuit of the incoming signal pins

Vee
10K
(Any of the RS-232C, CMOS, and TTL levels may be accepted.)
RXD 3.9K d
€TSS O —Wh ® 9
DSR N
b 100K

APPENDICES

(5) SIO connector

Pin No.

Signal name

-

RD

(6) Analog input plug

Pin No.

Signal name

GND

Not used.

AlIN

P G\

/ CoATQAS?

ot e)

(7) AC power adapter plug

l]@

GND

AIN

3.5mm plug

SSC2e
{T=="g

APPENDICES

10.4 Z-80 MNEMONIC CODES
(1) Flags of Z-80 CPU

The flag registers (F and F’) are used to check the status of the CPU.
The flag bits are configured as follows.

7 6 5 4 3 2 1 0
S|{Z[{X|H|XPVNIC

C : Carryflag

N : Add/subtract flag

P/V : Parity/overflow flag

H : Half-carry flag

Z : Zero flag

S : Sign flag

X : not used

These flag are set or reset depending on the CPU operation. You can check the C, P/V, Z and S flags
by using an instruction such as a conditional jump instruction or a call instruction, however, you
cannot directly check the H and N flags that are used for BCD operation.

Carry flag (C)

The way the carry flag is set or reset differs depending on an arithmetic operation to be performed.
The carry flag is set when a carry occurs during an ADD instruction or when a borrow occurs during a
SUB instruction. If a carry or borrow does not occur, the carry flag is reset.

When the conditions for the decimal correction are satisfied, a DAA instruction sets the carry flag.
With RLA, RRA, RL and RR instructions, the carry flag is included as a bit within the bit loop.

With RLCA, RLC and SLA instructions, the content of bit 7 of the register memory location is shifted to
the carry flag.

With RRCA, RRC, SRA and SRL instructions, the content of bit 0 of the register memory location is
shifted to the carry flag.

With AND, OR and XOR instructions, the carry flag is reset.

The carry flag is set by SCF instruction and reset by CCF instruction.

Add/subtract flag (N)
This flag is used during a DAA instruction.
The flag is reset to “0” by an ADD instruction and is set to “1" by a SUB instruction.

Parity/overflow flag (P/V)
In an arithmetic operation, if the resuit to be stored in the accumulator is out of the range between
—128 and +127, an overflow occurs and the parity/overflow flag is set.
The conditions in which the flag is set or reset are as follows:
1. if two numbers having different signs are added, the flag is set.
2. If two numbers having the same sign are added and the result will have the opposite sign, the
flag is set.

APPENDICES

Example Decimal Binary
number number
+120 = 0111 1000
+) +105 = 06110 1001
- 95 = 1110 0001 (overflow)

3. If two numbers having the same s'ign are subtracted, the flag is reset.

4. In subtraction of two numbers having different signs, whether the flag is set or reset depends on
the absolute values of these two numbers.
For instance, the flag is set in the following case.

Example Decimal Binary
number number
+127 = 0111 1111
-) — 64 = 1100 00060
- 65 = 1011 1111 (overfiow)

The parity/overflow flag is also used to check the parity (the number of “1s” in a byte) of the result in
a logical operation or in rotate instructions. If the total number of 1s is odd, it is the odd parity (P=0).
If the total number of 1s is even, it is the even parity (P=1}.

During a search instruction such as CPl or CPD or a block transfer instruction such as LDl or LDD, the
state of the byte counter (BC) is monitored. if the byte counter is not “0”, the P/V flag is set to “1”, and
if the byte counter becomes “0”, the flag is reset to “0".

During an (LD A,l) instruction or an (LD A,R) instruction, the content of IFF2 (interrupt enable flip-flop
2) is copied to the P/V flag. Thus, you can save or test the content of IFF2.

When you read one byte from an /O device by IN r,(C) instruction, the P/V flag is set or reset
depending on the parity of the data read.

Half-carry flag (H)

The half-carry flag is set or reset depending on whether there is a carry or borrow between bit 3 and
bit 4 during an 8-bit arithmetic operation.

The half-carry flag is used in a DAA instruction to correct the result of an add or subtract operation for
packed BCD numbers.

The flag is set to “1" if a carry or borrow occurs, and reset to “0” if a carry or borrow does not occur.

Zero flag (2)

The zero flag is set or reset depending on whether the result of an instruction is zero or not.

If the result {i.e., the content of the accumulator) of an 8-bit arithmetic or logical operation is zero, the
zero flag is set to “1“, and if the result is not zero, the flag is reset to “0".

During a search instruction, if the content of the accumulator coincides with the content of the
memory location specified by HL register pair, the zero flag is set to “1”.

During a bit test instruction, the compiement of the specified bit is copied to the zero flag.

During an input/output instruction (INI, IND, OUT! or OUTD), if the byte counter value minus 1 (B-1) is
zero, the zero flag is set to “1”. If not zero, the zero flag is reset to “0".

During an IN r,{C) instruction, if the input data is zero, the zero flag is set to A,

APPENDICES

Sign flag (S)

The sign flag holds the content of bit 7 of the accumulator and is used for arithmetic operation.

For a signed operation, a complement of 2 is used. If bit 7 is “0”, the value is a positive number, and if
bit 7 is “1”, the value is a negative number.

The range of a positive number is that can be expressed by 7 bits (from 0 to 127), and the range of a
negative number is also that can be expressed by 7 bits (from —1 to —128).

During an input instruction (IN r,(C}), the polarity of the data read is copied to the sign flag: if the data
is positive, the sign flag is reset to “0”, and if it is negative, the sign flag is set to “1”.

Symbols indicating the state of the flags used for Z-80 instruction set

The flag will be affected by the result.

The flag will not change.

The flag will be reset.

The flag will be set.

The flag content will be destroyed.

The flag will be set if an overflow occurs, otherwise, it will be reset.
The flag will be set if the parity is even, otherwise, it will be reset.

T< X =20 0 <

APPENDICES

(2) Structure of internal registers
The internal registers of Z-80 CPU are composed of 207 bits of read/write memory, and have the
following structure.

Main register set Sub-register set
i - ‘W
Accumulator Flag Accumulator Flag |
A F A’ F’ i
B C B’ C’
General register group
D E D’ E’
H L H' L’
. /
" i B
. /
Interrupt vector Memory refresh
register register
I R
Index register I1X IX
L Special register group
Index register Y IY
Stack pointer SP SP
Program counter PC PC
/

The CPU registers consist of the general register group and the special register group. The general
register group consists of two sets of registers: the main register set and the sub-register set, and the
content of a main register can be exchanged with the content of the corresponding sub-register by
using an exchange instruction.

Each register set consists of one 8-bit accumulator, one 8-bit flag register and six 8-bit general
registers. Two general registers can be paired like BC, DE or HL to be used as one 16-bit register.
The interrupt vector register | (8-bit register), upon interruption, specifies the upper 8 bits of the
indirect address of an interrupt service routine, while the lower 8 bits of the address is given by the
device which has issued the interrupt.

The memory refresh register R (7-bit register) automatically generates memory refresh addresses
when a dynamic RAM is used as the external memory.

Symbols for registers used for Z-80 instruction set

rr : Any one of the CPU internal registers A, B, C, D, E, H, and L
dd, pp, 9q, rt, ss : A register pair composed of CPU internal registers
ii : One of the index registers IX and IY

R : Memory refresh register

d : 8-bit displacement used for memory location using an index register

e : A signed complement of 2 {from —126 to 129) in the relative
addressing mode

n : 8-bit data (from 0 to 255)

nn : 16-bit memory location {from 0 to 65535)

na A

(3) 8-bit load instructions

APPENDICES

Mnemonic . Fiags OP code No. of | No.of | No. of
code CpEaton Z PV} § H 76 543 210 bytes |M cycles T states Remarks
LD rr r—r’ e e e e| 0l r r’ 1 1 4 r,r Register
LD r,n re<n L e 00 r 110 2 2 7 000 B
~ n - ' 001 C
LD r,(HL) re(HL) e|e|e e| 01 r 110 [1| 2|7 010 D
011 E
LD r,(IX+d) r—(IX +d) |8 o L4 11 011 101 3 b) 19 100 4
01 r 110 101 L
“ a4 = 1 A
LD r,(IY+d) r—(IY +d) ele! e e 1111110 3 5 18
01 r 110
— d —
LD (HL),r (HL)+r e | @@ @ 01 110 r 1 2 7
LD (IX-+d),r (IX +d)—r ol e o e 11 011 101 3 5 19
01 110 r
«— d —
LD (1Y +d),r (IY +d)<r ® | & @ e 11 111 101 3 5 19
01 110 r
- d —
LD (HL),n (HL)<n ele|e ® | 00 110 110 2 3 10
-~ n el
LD (IX+d),n (IX+d)n e e © e | 11 011 101 4 5 19
00 110 110
— d4 —
- n —
LD (IY+d),n (IY +d)<n e|e| e e | 11 111 101 4 5 19
00 110 110
— d —
-— n —
LD A,(BC) A<(BC) e| o e e | 00 001 010 1 2 7
LD A,(DE) A~(DE) ejole ® | 00011010 | 1 2 7
LD A,(nn) A<(nn) e | ®je@ ® | 00 111 010 3 4 13
- n —
— n g
LD (BC)A (BC)«<A @ &0 ® | 00 000 010 1 2 7
LD (DE),A (DE)—A ®|e e ® | 00 010 010 1 2 7
LD (nn),A (nn)+—A e elae ® | 00 110 010 3 4 13
— n —
— n —
LD A.I A<l $ WIFF2] % 0 11 101 111 2 2 9 IFF2: Content of the inter-
01 010 111 rupt enable flip-flop
LD AR A-R t [IFR2) ¢ 0] 11101101 | 2 2 9 2
01 011 111
LD LA I—A LR N e | 11 101 101 2 2 9
01 000 111
LD R,A R~A @0 @ ® | 11 101 101 2 2 9
01 001 111

APPENDICES

(4) 16-bit load instructions

i . Flags OP code | No. of | No.of | No. of
Mnce(:g:mc Operation Z PViS IN|H 76 543 210 bytes (M cycles | T states Remarks
LD dd,nn dd<nn ejo|e|e|e|e 00 ddo 001 3 3 10 dd Register
=- 00 BC
«— n -
01 DE
LD IX,nn IX+nn e(eo{o(e|e|e | 11011101 4 4 14 i i
00 100 001 *
— pn - 11 sSpP
L d n —
LD IY,nn IY<nn e|o|eo 6|00 11 111 101 4 4 14
00 100 001
b n -—
g n -
LD HL,(nn) He—(nn +1) eje|o|olo|e| w1010 | 3 | 5 |16
L<(nn) ~ n -
“— n —
LD dd,(nn) ddy <~ (nn+1) ele|oe|e|®e! 11101 101 4 6 20
dd, < (nn) 01 dd1 011

— n —

~— n —

LD IX,(nn) IXy<(nn+1) je|e|ele|e|e | 11011101 4 6 20

IX;, ~(nn) 00 101 010
— n S
-~ n - i
LD IY.(nn) IYy<(nn+1) (@0 8 e !/® e 11111101 4 6 20
1Yy, <(nn) 00 101 010
— n —
~— n el
LD (nn),HL {nn+1)«H ejlojle|eje}e | 00100 010 3 5 16
(nn)<L — n —
Lt n et
LD (nn),dd (nn+1)<dd,, (eje /e /e o @ 11101101 [4 | 6 [20
(nn)«<dd;, 01 ddo 011
- n —
— n —_
LD (nn),IX (nn+1)<IXy e|leieio oo 11011101 4 6 20
(nn)<IX, 00 100 010
- n —
- n —>
LD (nn),1Y (nn+1)—1Yy ele|ejeje]|e® | 11111 101 4 6 20
(nn)+<IY,, 00 100 010
-— n -_
L n ad
LD SP,HL SP«<HL ® 0@ 0 060 11 111 001 1 1 6
LD SP,IX SP—IX ojlelelele]eo| 11011101 2 2 10
11 111 001
LD SP,IY SP+1Y |6 e e 1111 101 2 2 10
11 111 001

nor

(5) Exchange, block transfer, and search instructions

APPENDICES

Mnemonic . Flags OP code | No, of | No.of { No.of
code Opexation ClZ PV S | N H | 76543210 | bytes [Moycles|T states Remacle
EX DE,HL DE+« HL e|e|ejo|e|e| 11101011 1 1 4
EX AFAF AF —AF e|lo|lele o | e 00001 600 1 1 4
EXX BC BC|le|®e|e|e® &) > 11011001 1 1 4 | Exchange the content of 2
DE [« |DE register pair with the con-
HL HL’ tent of the corresponding
EX (SP),HL H{(SP+1) eje(e|e|e| e 11100011 1 5 | 19 | sub-register pair.
. L+{SP)
EX (SP),IX IXhy~{SP+1)|® | e | @ | e | e e 11011 101 2 6 23
IX <{(SP) 11 100 011
EX (SP),IY IYy~{(SP+1)|®|e | e e | e} e| 11111 101 2 6 23
1Y <{SP) 11 100 011
)
LDI (DE)«<(HL) eie|tie®| 0|0 11101101 2 4 16 o
DE-DE+1 10 100 000
HL—HL+1
BC—BC—1
LDIR (DE)+~(HL) e|e{ 0 e |0} 0 11101101 2 5 21 | When BC#0
DE+~DE-+1 10 110 000 | 2 4 16 | When BC=0
HL<—HL+1
BC<BC-1
Repeat until
BC=0
®
LDD (DE)—(HL) |e|e|}|®]|0 |0 11101 101 2 4 16
DE<DE-1 10 101 000
HL<—HL-1
BC+~BC—-1
LDDR (DE)«~(HL) @1 0/e® |0)0 11101101 2 5 21 | When BC+#0
DE<DE-1 10 111 000 2 4 16 | When BC=0
HL+HL-1
BC —BC-1
Repeat until
BC=0
@0
CP1 A—(HL) o | ittt 11101101 2 4 16
HL+~HL+1 10 100 001
BC+—BC-1

noa=?

APPENDICES

Mnemonic s Flags OP code No. of | No. of | No. of
code Upecation Z PIV] S H | 76543210 bytes [M cycles | T states Remiariks
PUSH qq (SP—2)«qq, e|e e | 11 gqq0 101 1 3 11 qq Register
(SP_l)‘—qu 00 BC
PUSH IX (SP-2)<IX|, 8| ® @ | 11 011 101 2 4 15 01 DE
(SP—1)«~IXy 11 100 101
10 HL
PUSH IY (SP—2)<1Y,, e ® e | 11 111 101 2 4 15
(SP-1)<IYy 11 100 101 1 AF
POP qq qq, < (SP+1) oo @ | 11qq0001 | 1 3] 10
aq; < (8P)
POP IX IXy—(SP+1) ®| e @ | 11 011 101 2 4 14
IX,, < (SP) 11 100 001
POP 1Y IYg—(SP+1) e 6 ® | 11 111 101 2 4 14
IY, <(SP) 11 100 601

noo

APPENDICES

i Fla OP code No. No. ;
Mnce(:::mc Operation clzlpv g; N | H 76 543 210 ?);)'tezf I\;‘ :yc(;:;s TN:la?:s Remarks
OO
CPIR A—(HL) e |ttt |{¢j1r01100 [2 | 5 | 21 | WhenBC#0and A%(HL)
HL—HL+1 10 110 001 2 4 16 | When BC=0 or A=(HL)
BC<BC-1
Repeat until
A=(HL) or
BC=0
2|
CPD A—(HL) el it dry) 11101101 2 4 16
HL<HL-1 10 101 001
BC<BC-1
@0 _
CPDR A—(HL) ettt i 11101101 2 5 21 | When BC#0 and A¥(HL)
HL—HL-1 10 111 061 4 16 | When BC=0 or A=(HL)
BC—BC—1
Repeat until
A=(HL) or 4
BC=0

The P/V flag indicated by (@ in the table is set to “0” if the result is BC—1=0, otherwise the flag is set to “1”.

The Z flag indicated by @) in the table is set to “1" if A=(HL). otherwise the flag is set to “0”.

(6) Correction flag and CPU control instructions

Mt | Owmtin e T T Toson | e radeirone| Remae
DAA N $lef] 00100111 | 1 1 4 | Binary coded decimal num-
CFL Aek oo o1 /1| 00mwi11 | 1 | 1 | 4 [Dber(BCD)correction
NEG A—0—A PfYpvidr) o0 | 2 2 8

01 000 100
CCF CY-CY tle|lelelo x| o0t | 1 |1 | 4
SCF CY+1 {ie e 00 110 111 1 1 4
NOP No action, but @8 e o|e e 00000000 1 1 4
PC—PC+1
HALT Haltthe CPU. |e|e|e e |o|e| 01110110 | 1 1| 4
DI IFF<0 e(ejo|le|e!e| 11110 011 1 1 4
EI IFF1 ejleje|e|e || 11111 011 1 1 4
IM 0 Set in the inter- ei®j® e @ | 11 101 101 2 2 8
rupt mode 0. 01 000 110
IM 1 Setintheinter- o |eo|e|®|e|e| 11101101 | 2 | 2 | 8
rupt mode 1. 01 010 110
IM 2 Set in the inter- ele|{eieleie]| 11101 101 2 2 8
rupt mode 2. 01 011 110

APPENDICES

(7) 8-bit arithmetic and logical operation instructions

i Fla OP code \i
Meode Operation clzlpv g:: N |H| 76543 :m TJ;}ezf h‘f\‘:\c‘is Tt EmATAE
ADD A,r A<A+r $ltv]d 10 r 1 1] 4 r Register
ADD A,n A—A+n tpeyvis 11 10 | 2 | 2 000 B
~ n - 001 C
ADD A,(HL) | A<A+(HL) titlvis t| 100000 110 | 1 7 010 D
ADD A (IX+d) | A—A+(IX+d) [$ ¢ (V¢ $ | 11 011 101 3 19 o E
10 [000] 110 100 H
- d - 101 L
111 A
ADD A(IY+d) | A—A+(AY+d) | ¢ 8]Vt 0 || 11111101 3 5 19
10 110
— g -
ADC A,s A-A+s+CY |41t Vvitio|? Similar to ADD instructions, the
SUB s A—~A-s Pltqvitlgt operand s may be any of r, n,
SBC A,s A~A—-s—CY trs vt (HL), (IX+d), and (IY+d).
AND s A+—AAs oitirPlitiol The OP code is the same as that
OR s A<AVs oltiPltlojoe of the corresponding ADD in-
XOR s A—AD@s oltirPltlolo struction, with thepart re-
CP s A—s tttlvistals 111 placed with those bits enclosed in
INC r rer+1 el t|vit|olt|oor 1| 4 |2box
INC (HL) (H)—HL)+1 [e |t | V[0t 00110 3 |
INC (IX+d) (IX+d) ol divitio|t| 11011101 6 | 23
(X +d)+1 00 110 (100]
—~ d —
INC (1Y +d) (IY+d)« e |tivitiof] 11111101 3 6 23
Y +d)+1 00 110 [f00]
— d —
DEC m mem-—1 e{tjv]tir}|s [1o1] Similar to INC instructions, the
operand m may be any of r,
(HL), (IX+d), and IY+d).
The OP code is the same as that
of the corresponding INC in-
struction, with the replaced
with[101],

NN

(8) 16-bit arithmetic operation instructions

APPENDICES

Mnemonic . Flags OP code No. of | No. of | No. of '
code Gpeation PIVI S | N | H 1 76543210 | bytes |Micycles|T states JEemESs 2
ADD HL,ss HL—HL+ss e {®i0|X| 00 ssl 001 1 3 11 ss Register
ADC HL,ss HL<HL+ss+CY viilojXx | 11101 101 2 4 15 00 BC
01 ss1 010 01 DE
SBC HL,ss |HL<HL-ss—CY vitliix|mnwrw | 2| 4|15 10 HL
01 ss0 010 “ SP
ADD IX,pp IX<—IX+pp eje)|0}|X | 11011 101 2 4 15 pp Register
00 ppl 001 00 BC
01 DE
10 IX
11 Sp
ADD IY,rr (IY~IY+rr efe|0|{X| 11111 101 2 4 15 rr Register
00 rr1 001 00 BC
01 DE
10 1Y
11 SP
INC ss ss—ss+1 ®@|® @ | 00 ssO 011 1 1 6
INC IX IX—IX+1 [BRI] 11 011 101 2 2 10
00 100 611
INC IY IY-IY +1 |0 e e 11 111 101 2 2 10
00 100 011
DEC ss ss—ss—1 e|o|e| @ 00 ssl 011 1 1 6
DEC IX IX—IX-1 e 11 011 101 2 2 10
’ 00 101 011
DEC IY IY-IY—-1 e|e|e | ® | 11 111 101 2 2 10
00 101 011

AAa

{9) Rotate and shift instructions

Mnemonic . Flags OP code No. of | No. of | No. of
code Opecation PIV| S H | 76543210 | btes [Moycles|T states Bemaris
RLC A A e ® 0 00 000 111 1 1 4 Rotate the content of the
7=
accumulator to the left.
RL A ole ojooowur | 1| 1| 4
RRC A ole 0] 00001111 | 1 | 1 | 4 | Rotate the content of the
accumulator to the right.
RR A ele olooomm | 1| 1| 4
RLC r Pl 0 | 11 001 011 2 2 8 | Rotate the content of regis-
00[000] r ter r to the left.
RLC (HL) | 0| 11001011 | 2 4 | 15 r Register
00{000]110 000 B
RLC (IX+d) Pl o| motnwr | 4 | 6| 23 001 c
= 11 001 011 010 D
— d — 011 E
00[0001110 100 H
101 L
RLC (IY+d) Pl 0| 11111 101 4 6 23 34 A
11 061 011
— d -
00[000]110
RL s Pl 0 The operand s may be any
N of r, (HL), (IX+d) and
RRC s plt{ofo| [o00] (aY+d).
RR s 7=0 Pl 0 011]
SLA s {7 = o Pl 0 ﬁd_o
SRA s =0 Pt o (101
SRL s iy P} 0 111
A
RLD A P|? 0| mwrwr | 2 | 5 [18
(HLd 01 101 111
A
RRD 743 0 Pi? 0| 11101 101 2 5 18
L 01 100 111

297

APPENDICES

(10) Bit manipulation (set, reset, test) instructions

Mnemonic Oneration Flags OP code No. of | No. of | No. of Remarks
code P CTZIPVIS INTH | 76543210 | bytes |Moyeles|T states

BIT b,r 2Ty et x[x|ol1|1mooronn | 2| 2| 8 . Register
01 b r 000 B

BIT b,(HL) Z—(HD), et |x|xlol1] 11o01011 | 2| 3|12 001 C
01 b 110 010 D

BIT b,(IX+d) | Z-(IX+d)} el tlx!xjoj1| o | 4 | 5 | 20 a1 E
11 001 011 100 H
R 101 L
01 b 110 131 A&

BIT b,(IY+d) | Z—(IY+d), el t|xi{xlol1] x| 4|5 | 2 b Test bit
11 001 011 000 n
- d = -.001 1
01 b 110 . "

SET b,r £y, 1 elo o|lelele| 11001011 | 2 { 2|8 011 3
b r s 100 4

SET b,(HL) (HL) 1 ole|oje|e|o| ttosron | 2| 4 |15 i‘l’(l’ Z
b 1o 111 7

SET b,(IX+d) | (IX+d),+1 elojoo|ole| 11011100 | 4 | 6 | 23
11 001 011
— d —
i1 b 110

SET b,(IY+d) | (IY+d),~1 ele|e|/e e|le| 11111100 | 4 | 6 | 23
11 001 011
— d —
a1 b 110

RES b,s sp=0 10 Reset bit b of the operand

s=r,(HL), s.
(IX +d),
(IY +d)

nnNnnN

APPENDICES

{11) Jump instructions

Mnemonic . Flags OP code | No. of | No. of | No. of
code Gperitan Z |PV[S 76 543 210 | bytes [Mcyeles|T states Remarks
JP nn PCenn e e ® ® | 11 000 011 3 3 10
-~ “ —
e n —

JP ce,nn 1fceis true, then PCean. e|eo|e @ | 11 cc 010 3 3 10 cc Conditions
1f cc is false, move to the next —~ n - 000 NZnon zero
instruction. —~ n — 001 7 zero

IR e PC«~PC+e ele|e e| oootrobo | 2 | 3 | 12 010 NCnon carry

—~ e2 011 C carry

JR C,e 1 C=0, then move to the ele|e e | 00 111 000 2 2 7 109 PO par‘ity odd

niext instruction, - e2 — 101 PE parity even

110 P sign positive
If C=1, then 2 3 12 111 M sign negative
PCPC+e

JR NC,e [C=1, then move to the AN BN J ® | 00 110 000 2 2 7
next instruction. — e-2 —

If C=0, then 2 3 12
PC+—PC+e

JR Z,e 1§ Z=0, then move to the e e ® e | 00 101 000 2 2 7
next instruction. — o2 —

If Z=1, then 2 3 12
PC«—PC+e

JR NZ,e 1 Z=1, then move to the e el @ | 00 100 000 2 2 7

next instruction. — e2 —
If Z=0, then 2 3 12
PC«PC+e
JP (HL) PC—HL @ @@ e | 11 101 001 1 1 4
JP (IX) PCIX e ®|@® ® | 11 011 101 2 2 8
11 101 001
JP (IY) PCIY e|[6 e e | 11 111 101 2 2 8
11 101 001

DINZ,e B«B-1 e e |® ® | 00 010 000 2 2 8 | When B=0
1 B=0, then move to the —e2 -
next instruction.

If B#0, then 2 3 13 | When B#0
PC«PC+e

The allowable range of displacement e is from —126 to +129. The OP code must be given by a binary number equivalent to

e-2.

APPENB{CES

|
+
|

(12) Call and return instructions |
A
Mnemonic " Flags OP code No. of | No. of | No. of
code Uperation PVISINI|IH| 76543 210 bytes 1M cycles|T states Remarks
CALL nn (SP—1)«PCy e|lej{e|eo|e@| | 11001 101 3 5 17
(SP—2)«PC;, — n -
PC«nn — pn —

CALL cc,nn Hecistrue, heoperaimiste. | @ | @ { ® | ® | ® | & | 11 cc 100 3 3 10 | When cc is false

same a5 CALL nn, H ce s false, n —
then move to the nest instruction. < n — 3 5 17 | When cc is true
RET PC; «{(SP) oleo e|e|e|®! 11 001 001 1 3 10
: PCy<«(SP+1)
RET cc Heeistrue, heoperaionisthe | @ | @ | @ [@ | ® | @ | 11 cc 000 1 1 5 | When cc is false
same as RET. .
1§ cc is false, then move to the 1 3 1 | Wheaoeisteoe
next instruction, _cc Conditions
RETI Return from the e|e|eje|e © 11 101 101 2 4 14 000 NZ non zero
interrupt. 01 001 101 001 Z zero
RETN Returnfrom 7— |® |o | o] o o |®| 11101100 | 2 | 4 |14 |® 01O NC non carry
NML 01 000 101 011 C carry
100 PO parity odd
RST p (SP—1)«PCy e|e|/e /oo e 11 t 111 1 3 11 101 PE parity even
(8P=2)—PCy 110 P sign positive
PCy —0 . 111 M sign negative|
PCL<P
t P
000 00H
001 08H
010 10H
011 18H
100 20H
101 28H
110 30H
111 38H

nnc

APPENDICES

(13) Input and output instructions

Flags

OP code

No. of

No. of

No. of

Mnemonic g
code Operation clzpvls H | 76543 210 | bytes [Mcycles|T states Rensnks
IN A,(n) A<(n) ol®|® @ e | 11 011 011 2 3 11 {n to Ao— A
<~ n - Ace to Ax~Aus
IN (0 r<(C) e l|P}! 0 11101101 | 2 3 | 12 |C to Ao~Ar
If r=110, only 01 r 000 B to Ax—~Ais
the flags are
affected. @
INI (HL) —(C) X{t1X|X X | 11 101 101 2 4 16 | C to Av—A7
B<B-—-1 10 100 010 B to As—~A1s
HL—HL+1
INIR (HL) —(C) Xt 1{X{X X { 11 101 101 2 5 21 {C to Ao—~AT
B-B-1 10 110 010) B to As~A1
HL<HL+1 2 4 16
s When
Repeat until B=0 (@) by
IND (HL) —(C) XXX X| 1101101 | 2 | 4 | 16 |Cto.Ao~AT
B<B~—1 10 101 010 B to As—~A1s
HL<HL-1
INDR (HL) —(C) X{11X1]X X | 11 101 101 2 ‘5 21 | C to Ao~A7
B-B-1 10 111 010 (oo B to As—A1s
HL<HL-1 2 4 16
Repeat until B=0 (oo
OUT (n),A {(n) <A e|le |} e & | 11 010 011 2 3 11 |n to Ao~Ar7
~ n - Acc to As—~A1s
ouT (O),r (C)r ejele|eo ® | 11 101 101 2 3 12 { C to Ao~Ar
01 r 001 B to Ax—~Ais
@
OUTI (C)—(HL) x| t]x|x x| 11101100 | 2 | 4 | 16 |CtoAo~As
B—B-1 10 100 011 B to As—~A1
HL—-HL+1
OTIR (C)—(HL) X{1|X[X X | 11 101 101 2 5 21 | C to Ao—~Ar
B—B-1 10 110 011 ies] B to As~Ars
HL<HL+1 2 | 4 | 16
i~ When
Repeat until B=0 (B=0)
@
oUTD (C)~(HL) X{4jx)X X | 11 101 101 2 4 16 | C to Aa—~A7
B+~B-1 10 101 011 B to As—~A1s
HL<-HL-1
OTDR (C) —(HL) X[1]X}|X X | 11 101 101 2 5 21 | C to Ao—~A7
“—R— When: i
B—B-1 10 111 011 (m&;} B to As~ A1
HL<—HL-1 2 4 16
1 R When
Repeat until B=0 (B=0)

The Z flag indicated by (D) in the table is set to “1” if the result is BC—1=0, otherwise the flag is set to “0”.

[aYa¥al

10.5 MNEMONIC CODES OF LH-5803

List of LH5801 Microprocessor will be shown in pages to follow. There are following nine

types of commands.

Single byte command

(1) i op code

Two-byte command

@ 11111101

op code
(3) r op code immediate |
(i
Three-byte command
@ 11111101 opcode immediate
(i)
(5) L op code immediate H immediate L |
() 16 bits ()
(6) { opcode | address H . addressL |
(a) (b)
Four-byte command
(7 ! 11111101 ; op code x address H ‘ address L
(a) (®)
(8) 1 op code { address H | address L | immediate
(a) (b) ()
Five-byte command
opcode | addressH | address L immediate]

(9) {Tnnlmi
|-

(@)

(b)

(1)

APPENDICES

APPENDICES

8-bit CPU command list (1)

Arithmetic/logical
I STATUS | MACHINE LANGUAGE |
MNEMONIC SYMBOLIC OPERATION BYTE | CYCLE COMMENT
CVHIZIE!76543210
ADC Ru A+Ri+C—A O0QO—- {00R. 0010 1 6
© 8584/ R. Ru R
Ru A+Ru+C—A 10Rw 0010 1 6
00| Xt Xu X
(R) A+(R)+C—A 00R 0011 1 7
01 iYL Yu Y
{a,b) A+{gb)+C—A 10100011 3113
10!U Us U
111 % % %
#(R) A+ #{R +C—A FO 2 1 n
0O0R 0011
#lab | A+E(ah+CoA e 4 |7
. N 10100011
& Address of (a,b)
ADI A A+i+C=A 10110011 2 7
]5 87 0
[o]
(R),i (R)+i—{R) 01R 1111 2 13 .
(High order) (Low order)
(abhi | (@b +i~tab) 111017 ¥ 4 |19
@ (R)--MEQ accessed
fo #(R)---ME1 accessed
o .
H(RL | 2RV +i->H(R) 81 R AT 3 | w7
Elabli | £lab +i>=(ab FD 5 | 23
L T 11101111
DCA (R} A+{R) +C—A(BCD) 10 R 1100 1 15
£(R) A+ #(R)+C—A(BCD) D 2 |19
10R 1100
ADR Rit+A—=Ru FD 2 11
16-bit register
\16-bit e 11 R1010
operation;
RH+1-RH - if C7
SBC Ru A—RL—C~-A QOOO~- {G0R. 0000 1 6
Rw A—Ru—C-A 10Rs 0000 1 6
(R A—{Ri—C—A 00 RO0OOO! 1 7
{a,b A—iab)—C—A 10100001 3 13
- FD
#(R) A—#(R1=C~A | 00 R 0001 2 1 n
_ : FD
#igb) | A—%{ab—C—A i 10100001 4 17
SBI A A—i—C-A 10110001 2 7
DCS (R A—{R)—C—A(BCD) 00 R 1100 1 13
_ FD
#(R) A— #(R)—C—A(BCD) 00 R1100 2 |7
AND (R) AN(R) A ——=-0—100 R 1001 1 7
(a,b) AAla,b)>A 10101001 3 {13
FD
%#(R) AA#(R —A 00 R 1001 2 1 n
FD
#(abd) | AAEla b -A 10101001 4 | 17
ANl A, AA=A 10111001 2 7
(R),i (RIATI=(R) 01 R1001 2 |13
(a,b),i (a,b) Ai=a,b) 11101001 4 |19
FD
H(RM #(R)AI= £(R 61 R 1001 3 |17
FD
Hiab)i | #labAi-Hiab 11101001 5 | 23

Qann

8-bit CPU command list (2)

MNEMONIC | SYMBOLIC OPERATION CS:AHTL;SE{ - ':';C:":z :A:TUAGE BYTE | CYCLE COMMENT
ORA (R) AVI(R) =A ———0O—1{00 R 1011 17
(a.b) AViabi»A 10101011 3 113
#(R) AV #(R)—A 00 RFq 011 2 | n
#ab) | AVE(gb—A 101 OFDI 011 4 {7
ORI A AVi-A 10111011 l 2 |7
(R).i (RIVi=(R) 01 R1011 2 |3
(ab)i | (ab)Violab 111 % 011 4 |19
BRL | #RIVISHR) 01 RF’; 011 3 17
#lab)i | HlabViotlab 11101011 5 | 23
EOR (R) AB(R)~A ~——0O-{00R 1101 N
(a,b) A®(a,b) A 10101101 3 13
#(R) AS#(R) A 00 RFDI 101 2 11
#(ab) | ADH(ab -A 101 qu 101 4 |7
EAl i A®i—A 10111101 2 | 7
INC A A+1-A 0000-111011101 115
Ru Ru+i-RL 01 RO0OO0O 1 5
Ru Ru+ 1Ry 01 RHFDOOOO 2 |9
R R+I-R | —==—- 01 R 0100 1|5
DEC A A—T1-A O00C— (11011111 1] 5
R Rui—1-RL 01T R 0010 115
Ru Ru—1—Ru 01 RMFDO 010 2 9
R R—1-R === 01 RO110 115
Compare and bit test
CPA R A—RL O000—- {00 R 0110 116
Ru A—Rn 10R40110 1] 6
(R) A—(R) 00ROT11 1|7
(a,b) A—(a,b) 10100111 3 113
#(R) A—#(R) 00 RF%I 11 2 |1
£(ab) | A—%(ab 101 5%1 11 4 |17
CPl Rui Ru—i DITR 1110 2 17
Rw,i Ru—i 01 Ri1100 2 1 7
A A—i 10110111 2 |7
BIT (R AAR >Z ———0=-(00R 1111 v Loy
(a,b) AAN(a,b)>Z 10101111 3 13
#(R) AA#(R) =2 00 RFDI 111 2 I n
lab |AAR(ab>Z 101 oFD! 111 4 17
BI A ANI=Z 10111111 2 | 7
(R),i (RINI~Z 01 R1101 2 |10
(ab)i [labAi~Z 11101101 4 | 16
R | #RAISZ 01 le 101 3] 14
#labi | HlabAi-Z 111 gc; 101 KRR

APPENDICES

APPENDICES

8-bit CPU command list (3)
Load and store

STATUS | MACHINE LANGUAGE i
MNEMONIC | SYMBOLIC OPERATION BYTE | CYTLE COMMENT
CVHZIE|76543210 ‘
DA Ru RL—A ———O—-{00R 0100 1 ! 5
Ru RH—A 1T0R 0100 1 ‘ 5
(R) (R)=A 00 R 0101 1 {6
(a,b) (a.b)=A 10100101 3 12
#(R) #(R)>A 00 RF%1 01 2 |10
#iab | #lab oA 101 oF%v 01 4 |16
LDE R {R)—AR—1-R 01 ROV 1 6
UN R (RI=AR+1-R 01 RO1O1 1 6
DI Rui i»Re. |- C1 R T010 2 6
Rw,i =R 01 Re1000 2 | 6
Ai i A ——=0-110110101 2} 6
S.ij ij=s | m———= 101%010; 3412
LDX R R-X 0O R 1000 2 | n
S S=X 01 oqu 000 2 i n
P P-X 010 1”% 000 2 | n
STA R AR ————— Q0R 1010 1 5
R A->Ru 00R«1000 1 5
(R) A=(R) 00 R 1110 1 6
(ab! A—(a,b) 10101110 312
#(R A= %(R) 00 RF[l) 110 2 |10
#lab) | Ao E(ab 101 501 110 4 | 16
SDE R A={RI,R—1=R 01 ROOTI1 1 6
SIN R A-(R),R+1-R 01 ROCO1T 1 6
STX R X-R 01 RF[%mo 2 I n
s x-S 01061110 2 | n
P X-P oro1FDn1o 2 | n
PSH A A—(S),S—1-S 1 1ooFDn 000 2 | n
R Ru—{S),RH-(S—1), 10 RFR 000 2 | 14
s—2-S
POP A (S+1=AS+1-$ -—=0-11 oooF% 010 12
R (S+1D=RH(S+2)=RL, | ————— 00 RFDl 010 2 |15
§+2-5
ATT A-TISTATUS) Q0000|111 501 100 2 9
TTA T(STATUS) A —-—-0-1101 qu 010 2 | 9
Block transfer and search
} T
TIN x1-n, § I | s 11110101 } 17
CIN A-(X) X +1-X }OOOO— 11110111 I 117

APPENDICES

8-bit CPU

‘ ok T STATUS | MACHINE LANGUAGE (
MNEMONET COMMENT
Sy CVHZIE 76543210} ;
ROL O000- 11011011} o 5

T 5 T
ROR I L[Cl[700] 11010007, e

SHL [c]{7<0]-0 11011001 1|6

SHR 0-[7-0 J-[c] 11010101 1]9

DRL T (:]I_J___I ————— 11010111 1] 12
AL T W -

DRL # ME1 Area 11010111 2 | 16

DRR Clﬁ__—[ll_—?:] 11010011 12

A

| I ¢ 4

FD

DRR # ME1 Area 11010011 2 |18
. :

AEX C1 1 11110001 11 s

A
CUP control
1

AMO A-TIMER(TO~T]) 0578 | — — —— — 11060110 2 | o
FD

AM1 P 178 11011110 2 9
FD

cbv divider clear 10001110 2 8

ATP A-Qutput port 110 OFD] 100 2 9
(Clock output) D

sop 1-Disp 11000001 2 8
FD

RDP 0-Disp 11000000 2 8

SPU 1-PU ; 11100001 1 4

RPU 0-PU 11100011 1 4

SPV 1-PV 10101000 1 4

RPV 0-PV 10111000 1 4
FD

ITA INSA ——=0-{10111010 2 g
FD

RIE 0-IE —=—==C{10111110 2 8
: FD

SIE 1-IE ~===01i{1000000t1 2 8
FD

T A R 10110001 2 9
FD

OFF 01001100 2 8

NOP 00111000 1 5

SEC 1-C O—-——-=111111011 1 4

REC 0-C O-—=—=111111001 1 4

2N+

APPENDICES

8-bit CPU command list (5)

Jump
STATUS MACHINE LANGUAGE
MNEMONIC CYMBOLIC OPERATION BYTE | CYCLE COMMENT
CVHZIE|76543210
IMP 71 . ottt 10111010 3|12
s=0. +i
BCH s=0. P+i-P 100s1110 2 8 s=1.~i
s=1. P—i-P 9 (Includes on more cycle)
BCS if C=1,Pxi-P 100s0011 2 {#m
if C=0. continue
BCR ifC=0,P+i-P 100s0001 2 g | BRE Condition
0 0 0 { NC: non carry
if €=1. continue 001 C: carry
BVS ifV=1,Pxi-P 100s1111 2 |snom | 010 | NH:non harf
. . 011]}H half
if V=0. continue 1 0 0 | NZ: non zero
BVR if V=0, Px;-P 100s1101 2 1810/ | 101 |NV: zero
s, continge 1 1 0 | NV: non overflow
V=1 V1|V overflow
BHS if H=1, Pxi-P 100s0111 2 jenem
if H=0. continue
BHR if H=0, PXi-P 100s0101 2 [snom
if H=1. continue
BZS ifZ=1,Pxi-P 100s1011 2 8o
if Z=0. continue
BZR if =0, Pxi—P 100s1001 2 jshom
if Z=1.continue
LOP UL UL-1-UL 10001000 2 8/1
if Borrow=0,P—i—P
if Borrow=1,continue
Call
SJP PL=(S),Pu-(S—-1), | ————=— 10111110 3 19
@ Vector address (Q)
S—2-8, ij-P
VEJ: FF—au
VEJ PL—(S),PH>(S—1) -==0—-|11« i -0 1 17
11i0-q
S$—2-8{q)=Pulg+1)=PL
VMJ: FF—gu
vCs if C=1(q »Pu—>(S—1) 11000011 2 {8/21 etc.
'l
(q+1)-PL—=(8),8—2-S S
VCR if C=0, v 11000001 2 |8/21
VHS if H=1, v 11000111 2 i8/21
VHR if H=0, ” 11000101 2 18/
VZs if Z=1, ” 11001011 2 j8/21
VZR if Z=0, ” 11001001 2 |8/21
WS ifv=1, ” 11001111 2 18/21
VMJ (q)>Pu—(S—1),5—2—S 11001101 2 20
(q+1)=PL—(S)
Return
RTN (S+1)2PH(S+2)=PL, | ————— 10011010 1 1
S+2-8
RTI (S+1)=PH(S+21»PL | OOO0O 10001010 1 14
(S+3)-»T,S+3-S

NOTE: Pin above listindicate a succeeding byte. For a command accompanying the immediate value, it indicates

the byte that follows to the immediate value.

LH5801
MNEMONIC | MACHINE LANGUAGE | MNEMONIC | MACHINE LANGUAGE | MNEMONIC | MACHINE LANGUAGE
ADC | XL 02 ANl | (ab) |EQabi BWR | — 9D i
YL 12 #(X) |FD 49 i BZS | + 8B i
uL 22 #(Y) |FD59 i - 9B |
XH 82 #(U) |FD69 i BZR | + 89 i
YH 92 $#(ab) |[FDEQ a b i — 99 i
UH A2 AMO FD CE cov FD 8E
(X) 03 AM1 FD DE CIN F7
(y) 13 ATP FD CC CPA | XL 06
(u) 23 ATT FD EC YL 16
(ab) |A3ab BCH | + 8E i uL 26
#(X) | FD 03 - 9E i XH 86
#(Y) |FD13 BCS | + 83 i YH 9
#(U) |FD 23 — 93 i UH A6
#(ab) |FDA3 a b BCR | + 81 i (X) 07
ADI | A B3 i FREE N ERE
(X) 4F § BHS | + 87 i (U 27
(Y) 5F i - 97 i (ab) |A7ab
(v 6F i BHR | + 85 i #(X) | FD 07
(ab) |EFabi - 95 i #(Y) [FD17
#(X) | FD 4F i BI |A BF i #(U) | FD 27
#(Y) | FDSF i (X) 4D i #(ab) {FDA7 a b
#(U) |FD6F i (v) 5D i cPl | A B7 i
#(ab) |FDEFab i (V) 6D i XL 4E |
ADR | X FD CA (ab) |EDabi YL 5E i
\ FD DA #(X) |FD4D i uL 6E i
u FD EA #(Y) |FD5D ; XH 4C i
AEX F1 #(U) |FD6D i YH 5C i
AND | (X) 09 #(ab) |FDEDa b i UH 6C i
) 19 BIT | (X) OF DCA | (X) 8C
(v) 29 (v) 1F () 9c
(ab) |A9ab (V) 2F Q) AC
#(X) | FD 09 (ab) |AF ab #(X) | FD 8C
#(Y) [FD19 #(X) | FD OF #(Y) | FD9C
#(U) | FD 29 #(Y) |FDIF #(U) | FD AC
#(ab) |FDA9 a b #(U) | FD2F DCS | (X) oc
ANl | A B9 i #(ab) | FD AF a b (Y) 1C
(X) 49 i BVS | + 8F i (V) 2C
() 59 ; = 9F i #(X) | FDOC
) 69 i BWVR | + 8D i #(Y) |FD1C

N

APPENDICES

APPENDICES

MNEMONIC | MACHINE LANGUAGE | MNEMONIC | MACHINE LANGUAGE | MNEMONIC | MACHINE LANGUAGE
DCS | #(U) |FD2C LDA JUL |24 ORA | #(Y) |FD 1B
DEC |A DF XH |84 £(U) | FD 28

XL |42 YH | o4 | #(ab) | FD AB a b
Yoo|s2 UH | A4 ORI |A BB i
UL |62 (x) |05 (X) 4B
XH | FD 42 v 115 YY) |58 i
YH |FD52 (W |25 (U |68
UH | FD 62 (ab) |A5ab (ab) |EB abi
X 46 #(X) | FD 05 #(X) | FD 4B
Y 56 #(Y) |FD15 #(Y) | FD 5B
U 66 #(U) | FD 25 £(U) | FD 6B
DRL |(X) |[D7 3(ab) [FD A5 a b #(ab) |[FDEBabi
#(X) | FD D7 Lol | A B POP | A FD 8A
DRR [(X) |D3 . XL |4A X FD 0A
#(X) | FD D3 YL |5A Y FD 1A
EAl BD i UL | BA: U FD 2A
EOR |(X) |oD XH |48 PSH | A FD C8
v | ‘ YH |58 X FD 88
(L |20 UH |68 Y FD 98
(ab) |ADab s BE T U FD A8
#(X) |FDOD LDE | X 47 RDP |0 CO
#(Y) |FD 1D Y 57 | REC F9
#(U) [FD 2D u 67 | RIE { FD BE
#(ab) |FD AD a b LDX | X FD 08 ROL DB
HLT FD BI Y FD 18 ROR D1
INC | A DD u FD 28 RPU E3
XL |40 s FD 48 RPV B8
R P FD 58 RTI 8A
UL |60 LIN | X 45 RTN 9A
XH | FD 40 Y 55 SBC [XL |00
YH | FD S0 U 65 Y.oo[10
UH | FD 60 LOP (UL |88 UL |20
X a4 NOP 38 XH |80
Y 54 OFF FD 4C YH |90
U 64 ORA | (X} |oB UH | AO
ITA FD BA v 1B (x) o
IMP BA i) (v |28 v n
LDA |[XL |04 (ab) |ABab ERE
Y. oo|14 #(X) | FD 0B (ab) | Al ab

WNA

MNEMONIC | MACHINE LANGUAGE | MNEMONIC | MACHINE LANGUAGE MNEMONIC | MACHINE LANGUAGE |
sBC | (0 |FDOI TTA FD AA
#(Y) |FDN ves C3i |
#(U) | FD 21 VCR Cli
#(ab) |FD Al ab VEJ | CO Co
SBI Bl i c2 c2
SDE | X 43 c4 c4
Y 53 c6 c6
u 63 c8 c8
SDP FD C1 CA CA
SEC FB ge |¢c
SHL D9 CE |CE
SHR D5 DO | DO
SIE FD 81 D2 D2
SIN | X 41 D4 D4
Y 51 D6 D6
U 61 D8 D8
sip BE i j DA |DA
SPU El DC {DC
SPV A8 DE |DE
STA | XL 0A EO EO
\ 1A E2 E2
LuL 2A E4 E4
XH |08 E6 | E6
YH 18 E8 E8
UH |28 EA | EA
(X) | OE EC | EC
() 1€ EE EE
(v |2 FO FO
(ab) |AE ab F2 F2
#(X) | FD OE F4 F4
#(Y) [FDIE F6 F6
#(U) | FD 2E VM) CD i |
#(ab) | FDAE a v WS CF ;
STX | X FD 4A 743 CB i
Y FD 5A VZR C9 i
u FD 6A VHR c5
S FD 4E VHS C7 i
P FD 5E
TIN F5

NnNnr

APPENDICES

